MMaterialsgateNEWS 2015/07/09

Related MaterialsgateCARDS

Cost-saving ultrasound degassing now possible in continuous processing of aluminum melt

Cheaper, cleaner, greener alternative to rotary argon degassing

Having proved that ultrasound degassing of molten aluminium alloys is cleaner, greener and cheaper than current methods, a team of scientists from Brunel University London working within a European consortium has now taken the breakthrough a step further.

De-gassing the melts of aluminium alloys is a vital process otherwise the resulting solid metals end up being highly porous and often rejected for further use.

Project lead Prof Dmitry Eskin of the Brunel Centre for Advanced Solidification Technology explains: "The most common current method, argon rotary degassing, is energy intensive, involves rotating brittle parts and expensive argon gas.

"Having proved that ultrasound is cheaper, greener and just as efficient we wanted to look at achieving a continuous process that would allow us to apply degassing to much larger melt volumes and upstream from the casting mould.

"Our experiments showed that a plate sonotrode gave a continuous degassing efficiency of at least 50 per cent in the melt flow rising to 75 per cent in batch operation. This is even more impressive than a standard cylindrical sonotrode."

Prof Eskin believes that much greater efficiencies are simply waiting to be unlocked and is seeking an industrial partner to help his team address some of the engineering challenges.

He said: "Our initial experiments were with a flat S-shaped sonotrode positioned at the bottom of the through-flow degassing chamber.

"Although the efficiency of degassing was very good, we met some engineering challenges that need to be addressed.

"For example we found that the connecting the flat sonotrode to the ultrasonic transducer and the shape and dimensions of the plate sonotrode should be optimised through engineering solutions to assure industrial-scale operation.

"In summary, to scale up from the lab to pilot studies we need an industrial engineering partner now that we know the science is sound."

Source: Brunel University – 08.07.2015.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

3-D images give clues to extending catalyst life

Despite decades of industrial use, the exact chemical transformations occurring within zeolites, a common material used in the conversion of oil to gasoline, remain poorly understood. Now scientists have found a way to locate--with atomic precision--spots within the material where chemical reactions take place, and how these spots shut down. Called active sites, the spots help rip apart and rearrange molecules as they pass through nanometer-sized channels, like an assembly line in a factory. A process called steaming causes these active sites to cluster, effectively shutting down the factory, the scientists reported in Nature Communications. This knowledge could help devise how to keep the... more read more

Two Rice University studies detail aluminum’s valuable plasmonic properties

Humble aluminum’s plasmonic properties may make it far more valuable than gold and silver for certain applications, according to new research by Rice University scientists. Because aluminum, as nanoparticles or nanostructures, displays optical resonances across a much broader region of the spectrum than either gold or silver, it may be a good candidate for harvesting solar energy and for other large-area optical devices and materials that would be too expensive to produce with noble or coinage metals. Until recently, aluminum had not yet been seen as useful for plasmonic applications for several reasons: It naturally oxidizes, and some studies have shown dramatic discrepancies between... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED