MMaterialsgateNEWS 2017/09/27

Filter may be a match for fracking water

Rice scientists lead production of superhydrophilic membrane to clean fluids for reuse

A new filter produced by Rice University scientists has proven able to remove more than 90 percent of hydrocarbons, bacteria and particulates from contaminated water produced by hydraulic fracturing (fracking) operations at shale oil and gas wells.

The work by Rice chemist Andrew Barron and his colleagues turns a ceramic membrane with microscale pores into a superhydrophilic filter that “essentially eliminates” the common problem of fouling.

The researchers determined one pass through the membrane should clean contaminated water enough for reuse at a well, significantly cutting the amount that has to be stored or transported.

The work is reported in Nature’s open-access Scientific Reports.

The filters keep emulsified hydrocarbons from passing through the material’s ionically charged pores, which are about one-fifth of a micron wide, small enough that other contaminants cannot pass through. The charge attracts a thin layer of water that adheres to the entire surface of the filter to repel globules of oil and other hydrocarbons and keep it from clogging.

A hydraulically fractured well uses more than 5 million gallons of water on average, of which only 10 to 15 percent is recovered during the flowback stage. “This makes it very important to be able to re-use this water,” Barron said.

Not every type of filter reliably removes every type of contaminant, he said.

Solubilized hydrocarbon molecules slip right through microfilters designed to remove bacteria. Natural organic matter, like sugars from guar gum used to make fracking fluids more viscous, require ultra– or nanofiltration, but those foul easily, especially from hydrocarbons that emulsify into globules. A multistage filter that could remove all the contaminants isn’t practical due to cost and the energy it would consume.

“Frac water and produced waters represent a significant challenge on a technical level,” Barron said. “If you use a membrane with pores small enough to separate, they foul, and this renders the membrane useless.

“In our case, the superhydrophilic treatment results in an increased flux (flow) of water through the membrane and inhibits any hydrophobic material – such as oil – from passing through. The difference in solubility of the contaminants thus works to allow for separation of molecules that should in theory pass through the membrane.”

Barron and his colleagues used cysteic acid to modify the surface of an alumina-based ceramic membrane, making it superhydrophilic, or extremely attracted to water. The superhydrophilic surface has a contact angle of 5 degrees. (A contact angle of 0 degrees would be a puddle.)

The acid covered not only the surface but also the inside of the pores, and that kept particulates from sticking to them and fouling the filter.

In tests with fracking flowback or produced water that contained guar gum, the alumna membrane showed a slow initial decrease in flux — a measure of the flow of mass through a material — but it stabilized for the duration of lab tests. Untreated membranes showed a dramatic decrease within 18 hours.

The researchers theorized the initial decrease in flow through the ceramics was due to purging of air from the pores, after which the superhydrophilic pores trapped the thin layer of water that prevented fouling.

“This membrane doesn’t foul, so it lasts,” Barron said. “It requires lower operating pressures, so you need a smaller pump that consumes less electricity. And that’s all better for the environment.”

Rice alumnus Samuel Maguire-Boyle is lead author of the paper. Co-authors are Rice alumnus Joseph Huseman; graduate student Thomas Ainscough and Darren Oatley-Radcliffe, an associate professor, at Swansea University, Wales; and Abdullah Alabdulkarem, chairman of the Mechanical Engineering Department, and Sattam Fahad Al-Mojil, an assistant professor and environmental adviser, at King Saud University, Riyadh, Saudi Arabia. Barron is the Charles W. Duncan Jr.–Welch Professor of Chemistry and a professor of materials science and nanoengineering at Rice and the Sêr Cymru Chair of Low Carbon Energy and Environment at Swansea.

The research was supported by the Welsh Government Sêr Cymru Program, FLEXIS, which is partially funded by the European Regional Development Fund, and the Robert A. Welch Foundation.

Source: Rice University – 25.09.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

A new class of carbon nanotubes could be the next-generation clean-up crew for toxic sludge and contaminated water, say researchers at Rochester Institute of Technology.

Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials--silicon gels and activated carbon--according to a paper published in the March issue of Environmental Science Water: Research and Technology. RIT researchers John-David Rocha and Reginald Rogers, authors of the study, demonstrate the potential of this emerging technology to clean polluted water. Their work applies carbon nanotubes to environmental problems in a specific new way that builds on a nearly two decades of nanomaterial research. Nanotubes are more commonly associated with fuel-cell research. "This aspect is new... more read more

New study defines best materials for carbon capture, methane selectivity

Natural gas producers want to draw all the methane they can from a well while sequestering as much carbon dioxide as possible, and could use filters that optimize either carbon capture or methane flow. No single filter will do both, but thanks to Rice University scientists, they now know how to fine-tune sorbents for their needs. Subtle adjustments in the manufacture of a polymer-based carbon sorbent make it the best-known material either for capturing the greenhouse gas or balancing carbon capture with methane selectivity, according to Rice chemist Andrew Barron. The specifics are in a paper this month by Barron and Rice research scientist Saunab Ghosh in the Royal Society of Chemistry... more read more

Washington State University researchers have developed a soy-based air filter that can capture toxic chemicals, such as carbon monoxide and formaldehyde, which current air filters can't.

The research could lead to better air purifiers, particularly in regions of the world that suffer from very poor air quality. The engineers have designed and tested the materials for the bio-based filter and report on their work in the journal Composites Science and Technology. Working with researchers from the University of Science and Technology Beijing, the WSU team, including Weihong (Katie) Zhong, professor in the School of Mechanical and Materials Engineering, and graduate student Hamid Souzandeh, used a pure soy protein along with bacterial cellulose for an all-natural, biodegradable, inexpensive air filter. Hazardous gases escape most filters Poor air quality causes health problems... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED