MMaterialsgateNEWS 2018/04/12

Sensors: Tiny Injectable Sensor Could Provide Unobtrusive, Long-term Alcohol Monitoring

Credit: David Baillot/UC San Diego Jacobs School of Engineering

Engineers at the University of California San Diego have developed a miniature, ultra-low power injectable biosensor that could be used for continuous, long-term alcohol monitoring.

The chip is small enough to be implanted in the body just beneath the surface of the skin and is powered wirelessly by a wearable device, such as a smartwatch or patch.

“The ultimate goal of this work is to develop a routine, unobtrusive alcohol and drug monitoring device for patients in substance abuse treatment programs,” said Drew Hall, an electrical engineering professor at the UC San Diego Jacobs School of Engineering who led the project. Hall is also affiliated with the Center for Wireless Communications and the Center for Wearable Sensors, both at UC San Diego. Hall’s team presented this work at the 2018 IEEE Custom Integrated Circuits Conference (CICC) on Apr. 10 in San Diego.

One of the challenges for patients in treatment programs is the lack of convenient tools for routine monitoring. Breathalyzers, currently the most common way to estimate blood alcohol levels, are clunky devices that require patient initiation and are not that accurate, Hall noted. A blood test is the most accurate method, but it needs to be performed by a trained technician. Tattoo-based alcohol sensors that can be worn on the skin are a promising new alternative, but they can be easily removed and are only single-use.

“A tiny injectable sensor—that can be administered in a clinic without surgery—could make it easier for patients to follow a prescribed course of monitoring for extended periods of time,” Hall said.

The biosensor chip measures roughly one cubic millimeter in size and can be injected under the skin in interstitial fluid—the fluid that surrounds the body’s cells. It contains a sensor that is coated with alcohol oxidase, an enzyme that selectively interacts with alcohol to generate a byproduct that can be electrochemically detected. The electrical signals are transmitted wirelessly to a nearby wearable device such as a smartwatch, which also wirelessly powers the chip. Two additional sensors on the chip measure background signals and pH levels. These get canceled out to make the alcohol reading more accurate.

The researchers designed the chip to consume as little power as possible—970 nanowatts total, which is roughly one million times less power than a smartphone consumes when making a phone call. “We don’t want the chip to have a significant impact on the battery life of the wearable device. And since we’re implanting this, we don’t want a lot of heat being locally generated inside the body or a battery that is potentially toxic,” Hall said.

One of the ways the chip operates on such ultra-low power is by transmitting data via a technique called backscattering. This occurs when a nearby device like a smartwatch sends radio frequency signals to the chip, and the chip sends data by modifying and reflecting those signals back to the smartwatch. The researchers also designed ultra-low power sensor readout circuits for the chip and minimized its measurement time to just three seconds, resulting in less power consumption.

The researchers tested the chip in vitro with a setup that mimicked an implanted environment. This involved mixtures of ethanol in diluted human serum underneath layers of pig skin.

For future studies, the researchers are planning to test the chip in live animals. Hall’s group is working with CARI Therapeutics, a startup based in the Qualcomm Institute Innovation Space at UC San Diego, and Dr. Carla Marienfeld, an addiction psychiatrist at UC San Diego who specializes in treating individuals with substance abuse disorders, to optimize the chip for next generation rehab monitoring. Hall’s group is developing versions of this chip that can monitor other molecules and drugs in the body.

“This is a proof-of-concept platform technology. We’ve shown that this chip can work for alcohol, but we envision creating others that can detect different substances of abuse and injecting a customized cocktail of them into a patient to provide long-term, personalized medical monitoring,” Hall said.

The team has filed a provisional patent on this technology. Contact Skip Cynar in the campus Innovation and Commercialization Office at or (858)-532-2672 for licensing information.

Paper title: “A Sub-1 μW Multiparameter Injectable BioMote for Continuous Alcohol Monitoring.” Authors of the study are Haowei Jiang*, Xiahan Zhou*, Saurabh Kulkarni, Michael Uranian, Rajesh Seenivasan, and Drew A. Hall at UC San Diego.

*These authors contributed equally to this work.

This work was partially supported by the National Science Foundation (1621825), the National Institutes of Health (R41DA044905), and Samsung.

The size of the alcohol monitoring chip compared to a penny and a 16 gauge needle

David Baillot/UC San Diego Jacobs School of Engineering
Tiny Injectable Sensor Could Provide Unobtrusive, Long-term Alcohol Monitoring

Engineers at the University of California San Diego have developed a miniature, ultra-low power injectable biosensor that could be used for continuous, long-term alcohol monitoring. The chip is small enough to be implanted in the body just beneath the surface of the skin and is powered wirelessly by a wearable device, such as a smartwatch or patch.

“The ultimate goal of this work is to develop a routine, unobtrusive alcohol and drug monitoring device for patients in substance abuse treatment programs,” said Drew Hall, an electrical engineering professor at the UC San Diego Jacobs School of Engineering who led the project. Hall is also affiliated with the Center for Wireless Communications and the Center for Wearable Sensors, both at UC San Diego. Hall’s team presented this work at the 2018 IEEE Custom Integrated Circuits Conference (CICC) on Apr. 10 in San Diego.

One of the challenges for patients in treatment programs is the lack of convenient tools for routine monitoring. Breathalyzers, currently the most common way to estimate blood alcohol levels, are clunky devices that require patient initiation and are not that accurate, Hall noted. A blood test is the most accurate method, but it needs to be performed by a trained technician. Tattoo-based alcohol sensors that can be worn on the skin are a promising new alternative, but they can be easily removed and are only single-use.

“A tiny injectable sensor—that can be administered in a clinic without surgery—could make it easier for patients to follow a prescribed course of monitoring for extended periods of time,” Hall said.

The biosensor chip measures roughly one cubic millimeter in size and can be injected under the skin in interstitial fluid—the fluid that surrounds the body’s cells. It contains a sensor that is coated with alcohol oxidase, an enzyme that selectively interacts with alcohol to generate a byproduct that can be electrochemically detected. The electrical signals are transmitted wirelessly to a nearby wearable device such as a smartwatch, which also wirelessly powers the chip. Two additional sensors on the chip measure background signals and pH levels. These get canceled out to make the alcohol reading more accurate.

The researchers designed the chip to consume as little power as possible—970 nanowatts total, which is roughly one million times less power than a smartphone consumes when making a phone call. “We don’t want the chip to have a significant impact on the battery life of the wearable device. And since we’re implanting this, we don’t want a lot of heat being locally generated inside the body or a battery that is potentially toxic,” Hall said.

One of the ways the chip operates on such ultra-low power is by transmitting data via a technique called backscattering. This occurs when a nearby device like a smartwatch sends radio frequency signals to the chip, and the chip sends data by modifying and reflecting those signals back to the smartwatch. The researchers also designed ultra-low power sensor readout circuits for the chip and minimized its measurement time to just three seconds, resulting in less power consumption.

The researchers tested the chip in vitro with a setup that mimicked an implanted environment. This involved mixtures of ethanol in diluted human serum underneath layers of pig skin.

For future studies, the researchers are planning to test the chip in live animals. Hall’s group is working with CARI Therapeutics, a startup based in the Qualcomm Institute Innovation Space at UC San Diego, and Dr. Carla Marienfeld, an addiction psychiatrist at UC San Diego who specializes in treating individuals with substance abuse disorders, to optimize the chip for next generation rehab monitoring. Hall’s group is developing versions of this chip that can monitor other molecules and drugs in the body.

“This is a proof-of-concept platform technology. We’ve shown that this chip can work for alcohol, but we envision creating others that can detect different substances of abuse and injecting a customized cocktail of them into a patient to provide long-term, personalized medical monitoring,” Hall said.

Source: University of California - San Diego - 10.04.2018.

Paper title:

“A Sub-1 μW Multiparameter Injectable BioMote for Continuous Alcohol Monitoring.” Authors of the study are Haowei Jiang*, Xiahan Zhou*, Saurabh Kulkarni, Michael Uranian, Rajesh Seenivasan, and Drew A. Hall at UC San Diego.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

University of Washington engineers have turned tissue paper – similar to toilet tissue – into a new kind of wearable sensor that can detect a pulse, a blink of an eye and other human movement.

The sensor is light, flexible and inexpensive, with potential applications in health care, entertainment and robotics. The technology, described in a paper published in January in the journal Advanced Materials Technologies, shows that by tearing tissue paper that’s loaded with nanocomposites and breaking the paper’s fibers, the paper acts as a sensor. It can detect a heartbeat, finger force, finger movement, eyeball movement and more, said Jae-Hyun Chung, a UW associate professor of mechanical engineering and senior author of the research. “The major innovation is a disposable wearable sensor made with cheap tissue paper,” said Chung. “When we break the specimen, it will work... more read more

UConn engineers have created a biodegradable pressure sensor that could help doctors monitor chronic lung disease, swelling of the brain, and other medical conditions before dissolving harmlessly in a patient’s body.

The UConn research is featured in the current online issue of the Proceedings of the National Academy of Sciences. The small, flexible sensor is made of medically safe materials already approved by the U.S. Food and Drug Administration for use in surgical sutures, bone grafts, and medical implants. It is designed to replace existing implantable pressure sensors that have potentially toxic components. Those sensors must be removed after use, subjecting patients to an additional invasive procedure, extending their recovery time, and increasing the risk of infection. Because the UConn sensor emits a small electrical charge when pressure is applied against it, the device also could be used... more read more

ACS Sensors: [[“ A Hand-Held Optoelectronic Nose for the Identification of Liquors”]]

Watered-down or fake liquors can reap financial rewards for nefarious individuals, but the adulteration of liquor cheats consumers and can even lead to health hazards from added contaminants. Scientists now report in ACS Sensors a portable device with an advanced sensor array that can identify liquors and determine if they'd been altered, offering a strategy for liquor quality assurance. In the past few years, deaths from contaminated alcohol have been reported in Indonesia, Mexico, China, Poland and Russia, among other places. Unscrupulous individuals hoping to make a profit may homebrew liquor and bottle it in official-looking packaging or dilute liquor with anything from water to... more read more

A Northwestern Engineering professor, working in conjunction with the global beauty company L’Oréal, has developed the smallest wearable device in the world. The wafer-thin, feather-light sensor can fit on a fingernail and precisely measures a person’s exposure to UV light from the sun.

The device, as light as a raindrop and smaller in circumference than an M&M, is powered by the sun and contains the world’s most sophisticated and accurate UV dosimeter. It was unveiled Sunday, Jan. 7, at the 2018 Consumer Electronics Show in Las Vegas and will be called UV Sense. “We think it provides the most convenient, most accurate way for people to measure sun exposure in a quantitative manner,” said John A. Rogers, the Louis Simpson and Kimberly Querrey Professor of Materials Science and Engineering, Biomedical Engineering, and Neurological Surgery in Northwestern's McCormick School of Engineering. “The broader goal is to provide a technology platform that can save... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED