MMaterialsgateNEWS 2017/07/06

Related MaterialsgateCARDS

CAS Researchers Develop Selective Electrocatalysts to Boost Direct Methanol Fuel Cell Performance

Credit: Image by YANG Jun

A research group from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences recently reported the development of a new technology to boost performance of direct methanol fuel cells (DMFCs) using high-concentration methanol as fuel, shedding some light on the design of clean and affordable alternative energy sources for portable electric devices.

When methanol, the fuel of DMFCs, crosses over from the anode to the cathode through the proton exchange membrane (PEM), fuel cell performance is significantly degraded, creating a major problem for the commercialization of DMFCs. Commonly, scientists use various strategies to improve DMFC performance at high concentrations of methanol. These include improving the fuel-feed system, membrane development, modification of electrodes, and water management.

"These conventional strategies do not fundamentally overcome the key obstacle, but inevitably complicate the design of DMFCs and hence increase their cost," said YANG Jun, an IPE professor. Working with FENG Yan, a doctoral student, and LIU Hui, an assistant professor, YANG used selective electrocatalysts to run a DMFC at methanol concentrations up to 15 M, an alternative method for solving the methanol crossover in DMFCs.

The anode and cathode catalysts of DMFCs are commonly based on platinum (Pt). These catalysts are not selective for the methanol oxidation reaction (MOR) at the anode or the oxygen reduction reaction (ORR) at the cathode. With a deep understanding of the mechanisms of electrode reactions in DMFCs, the researchers designed and produced noble metal-based heterogeneous electrocatalysts with enhanced catalytic activity and high selectivity for MOR and ORR.

Encouragingly, the DMFCs operated extremely well with high-concentration methanol as fuel by sufficiently making use of the structural uniqueness and electronic coupling effects among the different domains of the noble metal-based heterogeneous electrocatalysts.

As shown in Fig. 1, ternary Au-Ag2S-Pt nanocomposites with core-shell-shell structures display superior anode selectivity due to the electronic coupling among their different domains, while core-shell Au-Pd nanoparticles with thin Pd shells exhibit excellent cathode selectivity because of the synergistic effects between their Au core and thin Pd shell.

The as-fabricated DMFC with selective catalysts produces a maximum power density of 89.7 mW cm-2 at a methanol-feed concentration of 10 M, and maintains good performance at methanol concentrations up to 15 M.

"Next, we are going to optimize the overall size of the catalysts, e.g., using Au nanoclusters with fine diameters as starting materials to further enhance the activity/selectivity for DMFC reactions," said YANG. In this way, new technologies will be created to help improve the design of more cost-effective and efficient DMFC systems.

Source: Chinese Academy of Sciences Headquarters – 01.07.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

A new type of nanocatalyst can result in the long-awaited commercial breakthrough for fuel cell cars.

Research results from Chalmers University of Technology and Technical University of Denmark show that it is possible to significantly reduce the need for platinum, a precious and rare metal, by creating a nanoalloy using a new production technique. The technology is also well suited for mass production. Even though there have been fuel cell cars for about fifty years, advances have not led to a commercial breakthrough. The catalysts in today’s fuel cells require large amounts of platinum, which is one of the world’s most expensive metals. ”A nano solution is needed to mass-produce resource-efficient catalysts for fuel cells. With our method, only one tenth as much platinum is needed... more read more

Fuel cells provide power without pollutants. But, as in the Goldilocks story, membranes in automobile fuel cells work at temperatures either too hot or too cold to be maximally effective.

A polyphenyline membrane patented by Sandia National Laboratories, though, seems to work just about right, says Sandia chemist Cy Fujimoto. The membrane, which operates over a wide temperature range, lasts three times longer than comparable commercial products, Fujimoto and his co-authors say in the Aug. 21 issue of Nature Energy. Fuel-cell PEMs (proton-exchange membranes) allow the excretion of protons -- the husk, in a sense -- of the material providing the electrons that form the fuel cell's electrical output. If the protons can't pass easily within the cell, the fettered flow reduces the electrical output. Currently commercial PEMs in most fuel-cell-powered vehicles require... more read more

Using a unique combination of advanced computational methods, University of Wisconsin-Madison chemical engineers have demystified some of the complex catalytic chemistry in fuel cells - an advance that brings cost-effective fuel cells closer to reality.

"Understanding reaction mechanisms is the first step toward eventually replacing expensive platinum in fuel cells with a cheaper material," says Manos Mavrikakis, a UW-Madison professor of chemical and biological engineering. Mavrikakis and colleagues at Osaka University in Japan published details of the advance Monday, Aug. 8, in the journal Proceedings of the National Academy of Sciences. Fuel cells generate electricity by combining electrons and protons -- provided by a chemical fuel such as methanol -- with oxygen from the air. To make the reaction that generates protons faster, fuel cells typically contain catalysts. With the right catalyst and enough fuel and air, fuel... more read more

Berkeley Lab innovation could lead to faster fueling, improved performance for hydrogen-powered vehicles

Hydrogen is the lightest and most plentiful element on Earth and in our universe. So it shouldn't be a big surprise that scientists are pursuing hydrogen as a clean, carbon-free, virtually limitless energy source for cars and for a range of other uses, from portable generators to telecommunications towers--with water as the only byproduct of combustion. While there remain scientific challenges to making hydrogen-based energy sources more competitive with current automotive propulsion systems and other energy technologies, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new materials recipe for a battery-like hydrogen... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED