MMaterialsgateNEWS 2018/03/08

Related MaterialsgateCARDS

New approach to measuring stickiness could aid micro-device design

Credit: Kesari Lab/Brown University

At the scale of microdevices, adhesion is one of the most important forces that engineers need to contend with — Brown University researchers have come up with a new way to measure it.

Brown University engineers have devised a new method of measuring the stickiness of micro-scale surfaces. The technique, described in Proceedings of the Royal Society A, could be useful in designing and building micro-electro-mechanical systems (MEMS), devices with microscopic moving parts.

At the scale of bridges or buildings, the most important force that engineered structures need to deal with is gravity. But at the scale of MEMS — devices like the tiny accelerometers used in smartphones and Fitbits — the relative importance of gravity decreases, and adhesive forces become more important.

“The main thing that matters at the microscale is what sticks to what,” said Haneesh Kesari, an assistant professor in Brown’s School of Engineering and coauthor of the new research. “If you have parts of your device sticking together that shouldn’t be, it’s not going to work. So in order to design MEMS devices, it helps to have a good way of measuring adhesion in the materials we use.”

That’s what Kesari and two Brown graduate students, Wenqiang Fang and Joyce Mok, looked to accomplish with this new research. Specifically, they wanted to measure a quantity known as “work of adhesion,” which roughly translates into the amount of energy required to separate a unit area of two adhered surfaces.

The key theoretical insight developed in the new study is that thermal vibrations of a microbeam can be used to calculate work of adhesion. That insight suggests a method in which a slightly modified atomic force microscopy (AFM) system can be used to probe adhesive properties.

Standard AFM works a bit like a record player. A cantilever with a sharp needle moves across a target material. A laser shown on the cantilever measures the tiny undulations it makes as it moves along the material’s contours. Those undulations can then be used to map out the material’s surface properties.

Adapting the method to measure adhesion would require simply removing the metal tip from the cantilever, leaving a flat microbeam. That beam can then be lowered onto a target material, where it will adhere. When the cantilever is raised slightly, some portion of the beam will become unstuck, while the rest remains stuck. The unstuck portion of the beam will vibrate ever so slightly. The authors found a way to use the extent of that vibration, which can be measured by an AFM laser, to calculate the length of the unstuck portion, which can in turn be used to calculate the target material’s work of adhesion.

Fang says the technique could be useful in assessing new material coatings or surface textures aimed at alleviating the failure of MEMS devices through sticking.

“Once you have a robust technique for measuring the material’s work of adhesion, then you have a systematic way of evaluating these methods to get the level of adhesion needed for a particular application,” Fang said. “The main advantage to this method is that you don’t need to change a standard AFM setup very much in order to do this.”

The approach is also much simpler than other techniques, according to Mok.

“Previous methods based on interferometry are labor intensive and may require many data points to be taken,” she said. “Our theoretical framework would give a value for the work of adhesion from a single measurement.”

Having demonstrated the technique numerically, Kesari says the next step is to build the system and start collecting some experimental data. He’s hopeful that such a system will aid in pushing the MEMS field forward.

“We have MEMS accelerometers and gyroscopes, but I don’t think the field has quite lived up to its promise yet,” Kesari said. “Part of the reason for that is that people haven’t completely understood adhesion at the small scale. We think that a more robust way of measuring adhesion is the first step towards gaining such an understanding.”

Source: Brown University – 07.03.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Surprisingly, melting hurts rather than helps, MIT research reveals.

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT have found that in some situations, melting can actually inhibit metal bonding rather than promote it. The surprising and counterintuitive finding could have serious implications for the design of certain coating processes or for 3-D printing, which both require getting materials to stick together and stay that way. The research, carried out by postdocs Mostafa Hassani-Gangaraj and David Veysset and professors Keith Nelson and Christopher Schuh, was reported in two... more read more

Credit: Case Western Reserve University

New research indicates how static electricity puts the charge in material, offering answer to centuries-old question

For centuries, scientists have tried to understand triboelectric charging, commonly known as static electricity. Triboelectric charging causes toner from a photocopier or laser printer to stick to paper, and likely facilitated the formation of planets from space dust and the origin of life on earth. But the charges can also be destructive, sparking deadly explosions of coal dust in mines and of sugar and flour dust at food-processing plants. New research led by Case Western Reserve University indicates that tiny holes and cracks in a material—changes in the microstructure—can control how the material becomes electrically charged through friction. The research is a step toward understanding... more read more

Credit: TU Eindhoven

When building with molecules, it is important to understand how they stick together when, amongst others, designing capsules for transportation of medication in the body. After all, how can you construct a car if you don’t know how the components work?

Researchers of the TU Eindhoven enable us to measure how long it takes for small molecules (monomers) to break free from a larger molecular complex (polymer), without influencing the movement of the polymers. Today, biomedical engineer René Lafleur, dr. Xianwen Lou, professor Bert Meijer and colleagues published a paper about this research in Nature Communications. The movements of molecules is often measured by connecting a coloring to the molecule. However, the coloring is large in size in relation to the molecule, therefore influencing the movement. PhD candidate Lafleur now proved, together with colleague Xianwen Lou, that the technique used for studying the folding of proteins (also... more read more

Coating the inside of glass microtubes with a polymer hydrogel material dramatically alters the way capillary forces draw water into the tiny structures, researchers have found.

The discovery could provide a new way to control microfluidic systems, including popular lab-on-a-chip devices. Capillary action draws water and other liquids into confined spaces such as tubes, straws, wicks and paper towels, and the flow rate can be predicted using a simple hydrodynamic analysis. But a chance observation by researchers at the Georgia Institute of Technology will cause a recalculation of those predictions for conditions in which hydrogel films line the tubes carrying water-based liquids. "Rather than moving according to conventional expectations, water-based liquids slip to a new location in the tube, get stuck, then slip again - and the process repeats over and... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products