MMaterialsgateNEWS 2016/11/30

Bionik: A new technique for structural color, inspired by birds

Disordered nanonetwork produces robust and vibrant colors for vehicles, biomimetic tissues and camouflage

A peacock's bright teal and brilliant blue feathers are not the result of pigments but rather nanoscale networks that reflect specific wavelengths of light. This so-called structural coloration has long interested researchers and engineers because of its durability and potential for application in solar arrays, biomimetic tissues and adaptive camouflage. But today's techniques to integrate structural color into materials are time-consuming and costly.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with King Abdullah University of Science and Technology, have developed a new, more robust and cost effective system to build large-scale metamaterials with structural color. The research is described in the journal Nature Light: Science and Applications.

A peacock's feather or butterfly's wing rely on photonic crystals or highly ordered arrays of nanofibers to produce colors. Reproducing those structures in a lab requires precision and expensive fabrication. SEAS researchers were inspired by a very different kind of feather.

Contingas are one of the most flamboyant bird families on the planet. In a sea of Amazon green, their feathers pop with electric blues, bright oranges and vibrant purples.

Unlike a peacock's ordered array of nanostructures, contingas get their vibrant hues from a disordered and porous nanonetwork of keratin that looks like a sponge or piece of coral. When light strikes the feather, the porous keratin pattern causes red and yellow wavelengths to cancel each other out, while blue wavelengths of light amplify one another.

"Usually, we associate the idea of disorder with the notion that something is uncontrollable," said Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS and senior of author of the paper. "Here disorder can be put to our advantage and used as a design parameter to create a new class of metamaterials with a wide range of funcitionalities and applications."

Inspired by the cotinga feather, the researchers used a simple etching process to create a complex but random porous nanonetwork in a metallic alloy. The structure was then coated with an ultra-thin transparent alumina layer.

You may be thinking, what kinds of colors can a metallic alloy produce other than gray? As it turns out, lots. Ever since 19th century English scientist Michael Faraday, scientists have known that metals contain a plethora of colors but light doesn't penetrate deep enough to reveal them. A gold particle, for example, depending on its size and shape, can be red, pink or even blue.

The porous nanostructure creates localized hotspots of different colors in the alloy. The color that is reflected by the localized states depends on the thickness of the transparent coating.

With no alumina overlayer the material looks dark . With a coating 33-nanometers thick, the material reflects blue light. At 45 nanometers, the material turns red and with a coating 53 nanometers thick, the material is yellow. By changing the thickness of the coating, the researchers could create a gradient of colors.

"This situation is equivalent to a material with an extremely large number of microscopic and colorful sources of light," said Andrea Fratalocchi, corresponding author of the paper and Professor of Electrical Engineering; Applied Mathematics and Computational Science at the King Abdullah University of Science and Technology. "The presence of a thin layer of oxide can control the intensity of these sources, collectively switching them on and off according to the thickness of the oxide layer. This research shows of how disordered materials can be turned into an extremely powerful technology, which can enable large scale applications that would be impossible with conventional media."

The metasurface is extremely lightweight and scratch-proof and could be used in large-scale commercial applications such as lightweight coatings for the automotive sector, biomimetic tissues and camouflage.

"This is a completely new way to control optical responses in metamaterials," said Henning Galinski, co-first author of the paper and former postdoctoral fellow in the Capasso group. "We now have a way to engineer metamaterials in very small regions, which previously were too small for conventional lithography. This system paves the way for large-scale and extremely robust metamaterials that interact with light in really interesting ways."

Source: Harvard John A. Paulson School of Engineering and Applied Sciences – 28.11.2016.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

MIT engineers find a simple and inexpensive new approach to creating bending artificial muscle fibers

Artificial muscles -- materials that contract and expand somewhat like muscle fibers do -- can have many applications, from robotics to components in the automobile and aviation industries. Now, MIT researchers have come up with one of the simplest and lowest-cost systems yet for developing such "muscles," in which a material reproduces some of the bending motions that natural muscle tissues perform. The key ingredient, cheap and ubiquitous, is ordinary nylon fiber. The new approach to harnessing this basic synthetic fiber material lies in shaping and heating the fibers in a particular way, which is described in a new paper in the journal Advanced Materials by Seyed Mirvakili... more read more

Researchers from Case Western Reserve University, Dayton Air Force Research Laboratory and China have developed a new dry adhesive that bonds in extreme temperatures--a quality that could make the product ideal for space exploration and beyond.

The gecko-inspired adhesive loses no traction in temperatures as cold as liquid nitrogen or as hot as molten silver, and actually gets stickier as heat increases, the researchers report. The research, which builds on earlier development of a single-sided dry adhesive tape based on vertically aligned carbon nanotubes, is published in the journal Nature Communications. As far as the researchers know, no other dry adhesive is capable of working at such temperature extremes. Liming Dai, professor of macromolecular science and engineering at Case Western Reserve and an author of the study teamed with Ming Xu, a senior research associate at Case School of Engineering and visiting scholar from... more read more

Many species of owl are able to hunt in effective silence by suppressing their noise at sound frequencies above 1.6 kilohertz (kHz) - over the range to which human hearing is most sensitive.

A team of researchers studying the acoustics of owl flight - including Justin W. Jaworski, assistant professor of mechanical engineering and mechanics at Lehigh's P.C. Rossin College of Engineering and Applied Science-are working to pinpoint the mechanisms that accomplish this virtual silence to improve man-made aerodynamic design - of wind turbines, aircraft, underwater vehicles and, even, automobiles. Now, the team has succeeded - through physical experiments and theoretical modeling - in using the downy canopy of owl feathers as a model to inspire the design of a 3-D printed, wing attachment that reduces wind turbine noise by a remarkable 10 decibels - without impacting aerodynamics... more read more

Researchers develop a two-way shape memory polymer fiber to enhance the tensile actuation abilities of coiled muscle fibers.

Artificial muscles made significant gains when a literal twist in the development approach uncovered the tensile -- or stretchy -- abilities of polymer fibers once they were twisted and coiled into a spring-like geometry. In a similar manner to the powerful climbing tendrils of cucumber plants, the unique geometry gives the coil a flexing motion when fiber material shrinks -- a reaction that can be controlled with heat. Now, researchers have improved these tensile properties even further by focusing on the thermal properties of the polymer fiber and the molecular structure that makes best use of the chiral configuration. In the cover article appearing this week in Applied Physics Letters... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED