MMaterialsgateNEWS 2017/05/30

Related MaterialsgateCARDS

Nanoalloys ten times as effective as pure platinum in fuel cells

A new type of nanocatalyst can result in the long-awaited commercial breakthrough for fuel cell cars.

Research results from Chalmers University of Technology and Technical University of Denmark show that it is possible to significantly reduce the need for platinum, a precious and rare metal, by creating a nanoalloy using a new production technique. The technology is also well suited for mass production.

Even though there have been fuel cell cars for about fifty years, advances have not led to a commercial breakthrough. The catalysts in today’s fuel cells require large amounts of platinum, which is one of the world’s most expensive metals.

”A nano solution is needed to mass-produce resource-efficient catalysts for fuel cells. With our method, only one tenth as much platinum is needed for the most demanding reactions. This can reduce the amount of platinum required for a fuel cell by about 70 per cent”, says Björn Wickman, researcher at the Department of Physics at Chalmers University of Technology.

If this level of efficiency is possible to achieve in a fuel cell, the amount of required platinum would be comparable to what is used in an ordinary car catalytic converter.

“Hopefully, this will allow fuel cells to replace fossil fuels and also be a complement to battery-powered cars”, says Björn Wickman.

Previous research has shown that it is possible to mix platinum with other metals, such as yttrium, to reduce the amount of platinum in a fuel cell. Even so, no one has yet managed to create alloys with these metals in nanoparticle form in a manner that can be used for large-scale production. The major problem has been that yttrium oxidizes instead of forming an alloy with the platinum.

This problem has now been solved by Chalmers researchers by combining the metals in a vacuum chamber using a technique called sputtering. The result is a nanometre-thin film of the new alloy that allows mass-produced platinum and yttrium fuel cell catalysts.

To use the new material, today’s fuel cells need to change slightly, but doing so creates incredible opportunities.

“When we can use our resources better, we save both the environment and lower costs. Fuel cells convert chemical energy into electrical energy using hydrogen and oxygen – with water as the only product. They have huge potential for sustainable energy solutions in transport, portable electronics and energy”, says Niklas Lindahl, researcher at the Department of Physics at Chalmers University of Technology.

Source: Chalmers University of Technology – 24.05.2017.

The results were recently published in the journal Advanced Materials Interfaces: “High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt3Y”

The article was written by Chalmers researchers Niklas Lindahl, Ligang Feng, Henrik Grönbeck, Christoph Langhammer and Björn Wickman, and by Eleonora Zamburlini, Maria Escudero-Escribano, Ifan E L Stephens and Ib Chorkendorff from the Technical University of Denmark.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Randy Montoya, Sandia National Laboratories

Fuel cells provide power without pollutants. But, as in the Goldilocks story, membranes in automobile fuel cells work at temperatures either too hot or too cold to be maximally effective.

A polyphenyline membrane patented by Sandia National Laboratories, though, seems to work just about right, says Sandia chemist Cy Fujimoto. The membrane, which operates over a wide temperature range, lasts three times longer than comparable commercial products, Fujimoto and his co-authors say in the Aug. 21 issue of Nature Energy. Fuel-cell PEMs (proton-exchange membranes) allow the excretion of protons -- the husk, in a sense -- of the material providing the electrons that form the fuel cell's electrical output. If the protons can't pass easily within the cell, the fettered flow reduces the electrical output. Currently commercial PEMs in most fuel-cell-powered vehicles require... more read more

Credit: Manos Mavrikakis

Using a unique combination of advanced computational methods, University of Wisconsin-Madison chemical engineers have demystified some of the complex catalytic chemistry in fuel cells - an advance that brings cost-effective fuel cells closer to reality.

"Understanding reaction mechanisms is the first step toward eventually replacing expensive platinum in fuel cells with a cheaper material," says Manos Mavrikakis, a UW-Madison professor of chemical and biological engineering. Mavrikakis and colleagues at Osaka University in Japan published details of the advance Monday, Aug. 8, in the journal Proceedings of the National Academy of Sciences. Fuel cells generate electricity by combining electrons and protons -- provided by a chemical fuel such as methanol -- with oxygen from the air. To make the reaction that generates protons faster, fuel cells typically contain catalysts. With the right catalyst and enough fuel and air, fuel... more read more

Berkeley Lab innovation could lead to faster fueling, improved performance for hydrogen-powered vehicles

Hydrogen is the lightest and most plentiful element on Earth and in our universe. So it shouldn't be a big surprise that scientists are pursuing hydrogen as a clean, carbon-free, virtually limitless energy source for cars and for a range of other uses, from portable generators to telecommunications towers--with water as the only byproduct of combustion. While there remain scientific challenges to making hydrogen-based energy sources more competitive with current automotive propulsion systems and other energy technologies, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new materials recipe for a battery-like hydrogen... more read more

Kyushu University research group develops new method for creating highly efficient gold nanoparticle catalysts for fuel cells

The successful future of fuel cells relies on improving the performance of the catalysts they use. Gold nanoparticles have been cited as an ideal solution, but creating a uniform, useful catalyst has proven elusive. However, a team of researchers at Kyushu University's International Institute for Carbon-Neutral Energy Research (I2CNER) devised a method for using a new type of catalyst support. In a potential breakthrough technology for fuel cells, a recently published article in Scientific Reports shows how wrapping a graphene support in a specially prepared polymer provides an ideal foundation for making uniform, highly active gold nanoparticle catalysts. Fuel cells produce electricity... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED