MMaterialsgateNEWS 2018/07/02

Sintering atomically thin materials with ceramics now possible

Credit: MRI/Penn State

For the first time, researchers have created a nanocomposite of ceramics and a two-dimensional material, opening the door for new designs of nanocomposites with such applications as solid-state batteries, thermoelectrics, varistors, catalysts, chemical sensors and much more.

Sintering uses high heat to compact powder materials into a solid form. Widely used in industry, ceramic powders are typically compacted at temperatures of 1472 degrees Fahrenheit or higher. Many low-dimensional materials cannot survive at those temperatures.

But a sintering process developed by a team of researchers at Penn State, called the cold sintering process (CSP), can sinter ceramics at much lower temperatures, less than 572 degrees F, saving energy and enabling a new form of material with high commercial potential.

"We have industry people who are already very interested in this work," said Jing Guo, a post-doctoral scholar working in the group of Clive Randall, professor of materials science and engineering, Penn State. "They are interested in developing some new material applications with this system and, in general, using CSP to sinter nanocomposites." Guo is first coauthor on the paper appearing online in Advanced Materials.

The idea of trying to develop a ceramic-2D composite system was the result of a National Science Foundation workshop on the future of ceramics, organized by Lynnette Madsen, that drew 50 of the top ceramic scientists in the U.S. Yury Gogotsi, a Charles T. and Ruth M. Bach Distinguished University Professor and director of the A.J. Drexel Nanomaterials Institute, at Drexel University, heard Randall's presentation on cold sintering and proposed a collaboration to develop a ceramic composite using a new class of two-dimensional materials, called MXenes, discovered by Gogotsi and his collaborators at Drexel. MXenes are carbide and nitride sheets a few atoms thin that possess extreme strength. Many of them are excellent metallic conductors.

While it has been known that mixing even a very small amount of 2D materials, such as graphene, into a ceramic can dramatically change its properties, MXene has never been used in ceramic composites. In this work, Guo and Benjamin Legum, Gogotsi's doctoral student, mixed 0.5 to 5.0 percent MXene into a well-known ceramic system called zinc oxide. The metallic MXene coated the ceramic powder and formed continuous two-dimensional grain boundaries, which prevented grain growth, increased the conductivity by two orders of magnitude, transforming semiconducting zinc oxide into a metallic ceramic, and doubled hardness of the final product. The addition of MXene also improved the ability of zinc oxide to transform heat to electricity.

"Ben came here quite frequently to work with Jing, and over time they overcame all of the problems involved with dispersing the 2D MXenes into the zinc oxide and then sintering it," said Randall. "This opens a whole new world incorporating 2D materials into ceramics."

Gogotsi added, "This is the first ceramic composite containing MXene. Taking into account that about thirty MXenes with diverse properties are already available, we are opening a new chapter in research on ceramic matrix composites, with potential applications ranging from electronics to batteries and thermoelectrics."

Guo and Legum are co-first authors on the paper "Cold Sintered Ceramic Nanocomposites of 2D MXene and Zinc Oxide." Gogotsi and Randall are corresponding authors. Other contributors are research assistant professor Babak Anasori and undergraduate student Pavel Lelukh from Drexel, and Ke Wang, staff scientist in Penn State's Materials Research Institute.

Source: Penn State - 29.06.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Purdue University image/Jaehun Cho

Purdue researchers have observed a way that the brittle nature of ceramics can be overcome as they sustain heavy loads, leading to more resilient structures such as aircraft engine blade coatings and dental implants.

While inherently strong, most ceramics tend to fracture suddenly when just slightly strained under a load unless exposed to high temperatures. Structural ceramic components also require high temperatures to form in the first place through a lengthy process called sintering, in which a powdered material coalesces into a solid mass. These issues are particularly problematic for ceramic coatings of metal engine blades intended to protect metal cores from a range of operational temperatures. A study published in Nature Communications demonstrates for the first time that applying an electric field to the formation of yttria-stabilized zirconia (YSZ), a typical thermal barrier ceramic, makes the... more read more

Rice University study shows 2-D layers of boron nitride could aid strength, toughness and thermal conductivity of ceramics

A little hBN in ceramics could give them outstanding properties, according to a Rice University scientist. Rouzbeh Shahsavari, an assistant professor of civil and environmental engineering, suggested the incorporation of ultrathin hexagonal boron nitride (hBN) sheets between layers of calcium-silicates would make an interesting bilayer crystal with multifunctional properties. These could be suitable for construction and refractory materials and applications in the nuclear industry, oil and gas, aerospace and other areas that require high-performance composites. Combining the materials would make a ceramic that’s not only tough and durable but resistant to heat and radiation. By Shahsavari’s... more read more

A beautiful, brainless brittle star that lives in coral reefs has the clue to super tough glass. Hundreds of focal lenses are located on the arms of this creature, which is an echinoderm called Ophiocoma wendtii.

These lenses, made of chalk, are powerful and accurate, and the deciphering of their crystalline and nanoscale structure has occupied Boaz Pokroy and his team, from the Technion-Israel Institute of Technology, for the past three years. Thanks to research done on three ESRF beamlines, ID22, ID13 and ID16B, among other laboratories, they have figured out the unique protective mechanism of highly resistant lenses. As an example, take tempered glass. It is produced by exerting compressive pressure on the glass which compresses it and leaves it more compact than in its natural state. Glass tempering is performed by rapidly heating and then rapidly cooling the material. In this process, the outside... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products