MMaterialsgateNEWS 2017/08/03

Related MaterialsgateCARDS

Technique enables printable and rewritable color images

Credit: Rice University

A chemical process that allows color images to be printed on specially coated paper and then erased so that different images can be printed on the same paper has been developed by researchers at Rice, Yonsei and Korea universities.

The researchers explain the technique in a paper that will be published in the Aug. 4 issue of the journal Advanced Materials, which will feature images printed with this process on the cover.

The technique makes use of structural colors, which have different properties than the ink dyes used for standard printing. The standard dyes absorb all the colors of the spectrum except for the color that is visible to the eye, such as red or blue, and the colors fade over time. Structural colors are determined by the selective reflections of certain colors at certain angles. They’re made from one-dimensional stacks of layered polymers, called block copolymers.

“Copolymers are soft, stretchable and deformable,” said Ned Thomas, Rice’s Ernest Dell Butcher Professor of Engineering and professor of materials science and nanoengineering, of chemical and biomolecular engineering and of chemistry. “You can swell or shrink them and change their shape and dimensions, which will affect which color they reflect.”

Thomas said one of his former Ph.D. students at MIT, Cheolmin Park, who is now a professor at Yonsei University, wanted to collaborate on developing printable and rewritable copolymer structural colors.

The researchers found that they could use a single, colorless, water-based ink based on ammonium persulfate (APS) to control how the copolymers cross-link in various locations, which impacts their subsequent thickness and hence the structural colors that are reflected. APS stops the swelling of the copolymers, and the thin layer reflects blue. Ethanol was used to thicken the copolymers, which reflected red. By applying varying amounts of ethanol and APS to paper that is coated with copolymers, the researchers were able to control the swelling and shrinking of the molecules and generate the colors and patterns needed to create a picture. Large amounts of APS stopped all swelling, which resulted in black images because there was no reflection.

The researchers also discovered that applying hydrogen bromide to the paper removed or erased the APS, so the reflections were neutralized, which “reset” the system so that the paper could be used again. They printed and erased images more than 50 times on the paper, with resolution similar to that of a commercial office inkjet printer.

Thomas said refinements will be needed before this technique is commercially viable. Because ethanol evaporates, the reflective patterns disappear, so the researchers are looking for a substance that is less volatile and will maintain the colors indefinitely. They also need to find an alternative to hydrogen bromide, which is toxic and not environmentally friendly.

Thomas thinks the technique has the potential to be cost-effective because it will require only one ink — the APS — and a modified inkjet printer that uses paper coated with copolymers, which should cost “pennies per sheet,” he said. “This could be really useful when you want to reconfigure, recolor and reshape messages on signs or clothing.”

In addition to Thomas and Park, co-authors of the paper included Han Sol Kang, Jinseong Lee, Suk Man Cho, Tae Hyun Park, Min Ju Kim, Chanho Park, Seung Won Lee, Kang Lib Kim and Du Yeol Ryu, all of Yonsei University, and June Huh of Korea University.

The research was funded by the Samsung Research Funding Center of Samsung Electronics and the William and Stephanie Sick Chair at Rice.

Source: Rice University - 01.08.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: American Chemical Society

Roll-up computer screens and other flexible electronics are getting closer to reality as scientists improve upon a growing number of components that can bend and stretch. One team now reports in the journal ACS Applied Materials & Interfaces another development that can contribute to this evolution: a low-cost conductive paper that would be easy to manufacture on a large scale. Current flexible electronic prototypes are commonly built using polymer thin films. But the cost of these films becomes a factor when they are scaled up. To address this issue, scientists have turned to paper, which is renewable, biodegradable and a fraction of the cost of polymer thin films. The downside of paper... more read more

Credit: Jingjin Xie

Imagine wearing clothes with layers of paper that protect you from dangerous bacteria.

A Rutgers-led team has invented an inexpensive, effective way to kill bacteria and sanitize surfaces with devices made of paper. "Paper is an ancient material, but it has unique attributes for new, high-tech applications," said Aaron Mazzeo, an assistant professor in Rutgers' Department of Mechanical and Aerospace Engineering. "We found that by applying high voltage to stacked sheets of metallized paper, we were able to generate plasma, which is a combination of heat, ultraviolet radiation and ozone that kill microbes." The researchers detail their invention in a study published online today in the Proceedings of the National Academy of Sciences. A video detailing... more read more

Credit: American Chemical Society

Despite the many advances in portable electronic devices, one thing remains constant: the need to plug them into a wall socket to recharge.

Now researchers, reporting in the journal ACS Nano, have developed a light-weight, paper-based device inspired by the Chinese and Japanese arts of paper-cutting that can harvest and store energy from body movements. Portable electronic devices, such as watches, hearing aids and heart monitors, often require only a little energy. They usually get that power from conventional rechargeable batteries. But Zhong Lin Wang, Chenguo Hu and colleagues wanted to see if they could untether our small energy needs from the wall socket by harvesting energy from a user's body movements. Wang and others have been working on this approach in recent years, creating triboelectric nanogenerators (TENGs... more read more

Credit: Ian Stewart and Benjamin Wiley

Highly conductive films make functional circuits without adding high heat

By suspending tiny metal nanoparticles in liquids, Duke University scientists are brewing up conductive ink-jet printer "inks" to print inexpensive, customizable circuit patterns on just about any surface. Printed electronics, which are already being used on a wide scale in devices such as the anti-theft radio frequency identification (RFID) tags you might find on the back of new DVDs, currently have one major drawback: for the circuits to work, they first have to be heated to melt all the nanoparticles together into a single conductive wire, making it impossible to print circuits on inexpensive plastics or paper. A new study by Duke researchers shows that tweaking the shape... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED