MMaterialsgateNEWS 2017/03/10

Related MaterialsgateCARDS

Turning food waste into tires

Credit: Photo by Kenneth Chamberlain, courtesy of The Ohio State University

Eggshells, tomato peels add strength to sustainable rubber

Researchers at The Ohio State University have discovered that food waste can partially replace the petroleum-based filler that has been used in manufacturing tires for more than a century.

In tests, rubber made with the new fillers exceeds industrial standards for performance, which may ultimately open up new applications for rubber.

As Katrina Cornish explains it, the technology has the potential to solve three problems: It makes the manufacture of rubber products more sustainable, reduces American dependence on foreign oil and keeps waste out of landfills.

Cornish, an Ohio Research Scholar and Endowed Chair in Biomaterials at Ohio State, has spent years cultivating new domestic rubber sources, including a rubber-producing dandelion. Now she has a patent-pending method for turning eggshells and tomato peels into viable—and locally sourced—replacements for carbon black, a petroleum-based filler that American companies often purchase from overseas.

About 30 percent of a typical automobile tire is carbon black; it’s the reason tires appear black. It makes the rubber durable, and its cost varies with petroleum prices.

Carbon black is getting harder to come by, Cornish said.

“The tire industry is growing very quickly, and we don’t just need more natural rubber, we need more filler, too,” she explained. “The number of tires being produced worldwide is going up all the time, so countries are using all the carbon black they can make. There’s no longer a surplus, so we can’t just buy some from Russia to make up the difference like we used to.

“At the same time,” she added, “we need to have more sustainability.”

That’s why she and her team are getting eggshells and other food waste from Ohio food producers.

“We’re not suggesting that we collect the eggshells from your breakfast,” Cornish said. “We’re going right to the biggest source.”

According to the USDA, Americans consume nearly 100 billion eggs each year. Half are cracked open in commercial food factories, which pay to have the shells hauled to landfills by the ton. There, the mineral-packed shells don’t break down.

The second most popular vegetable in the United States—the tomato—also provides a source of filler, the researchers found. Americans eat 13 million tons of tomatoes per year, most of them canned or otherwise processed.

Commercial tomatoes have been bred to grow thick, fibrous skins so that they can survive being packed and transported long distances. When food companies want to make a product such as tomato sauce, they peel and discard the skin, which isn’t easily digestible.

Cindy Barrera, a postdoctoral researcher in Cornish’s lab, found in tests that eggshells have porous microstructures that provide larger surface area for contact with the rubber, and give rubber-based materials unusual properties. Tomato peels, on the other hand, are highly stable at high temperatures and can also be used to generate material with good performance.

“Fillers generally make rubber stronger, but they also make it less flexible,” Barrera said. “We found that replacing different portions of carbon black with ground eggshells and tomato peels caused synergistic effects—for instance, enabling strong rubber to retain flexibility.”

“We may find that we can pursue many applications that were not possible before with natural rubber,” Cornish added.

The new rubber doesn’t look black, but rather reddish brown, depending on the amount of eggshell or tomato in it. With doctoral student Tony Ren, Cornish and Barrera are now testing different combinations and looking at ways to add color to the materials.

Current Ohio State doctoral student Jessica Slutzky and former master’s student Griffin Michael Bates participated in the research.

The university has licensed the patent-pending technology to Cornish’s company, EnergyEne, for further development.

Source: The Ohio State University – 06.03.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Lehigh University and Anand Jagota

Lehigh-led team collaborating with Michelin Corporation and NSF to develop materials with surface architectures -- inspired by surfaces on feet of grasshoppers or frogs -- that could improve the safety and reliability of tires

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his History of Animals. But it wasn't until about 15 years ago, when researchers were definitively able to attribute the gecko's powers of adhesion to nanoscale threads in the gecko's toes, that the practical possibilities of biomimicry at microscopic levels caught the imagination of researchers in earnest. Now, a Lehigh-led team is collaborating with Michelin Corporation and the National Science Foundation to develop materials with surface architectures... more read more

In an article published in Carbon, Dr Aravind Vijayaraghavan and Dr Maria Iliut from Manchester have shown that adding a very small amount of graphene, the world's thinnest and strongest material, to rubber films can increase both their strength and the elasticity by up to 50%.

Thin rubber films are ubiquitous in daily life, used in everything from gloves to condoms. In their experiments, the scientists tested two kinds of rubbery materials - natural rubber, comprised of a material called polyisoprene, and a man-made rubber called polyurethane. To these, they added graphene of different kinds, amounts and size. In most cases, it they observed that the resulting composite material could be stretched to a greater degree and with greater force before it broke. Indeed, adding just one tenth of one percent of graphene was all it took to make the rubber 50% stronger. Dr Vijayaraghavan, who leads the Nano-functional Materials Group, explains "A composite is a... more read more

University of Leicester researchers discover the importance of using the right rubber for the job

Researchers from the University of Leicester have discovered that when it comes to rubbers, textured surfaces, and reproduction, more fluid formulations have greater reliability than those that are thick and sticky. Rubber compounds are widely used to mould and produce copies of textured surfaces for scientific analysis, but so far little research has been done to establish which rubbers make the most reliable copies. A new study published in the academic journal Scientific Reports, led by Professor Mark Purnell from the University of Leicester’s Department of Geology, has discovered the best kind of rubber for reproduction. Professor Purnell explained: “Roughness is something that... more read more

Researchers combine simple experiments first employed by Leonardo da Vinci with advanced theory to reveal new atomic-level insights into what happens when rubber slides across asphalt

Friction, the force that slows down objects as they slide across a surface, can save lives when car brakes are slammed. Yet despite its obvious importance, no one knows for sure how friction works at the level of atoms and molecules. For more than 20 years, Bo Persson, a scientist at the Jülich Research Center in Germany, has studied what he calls the fascinating, but neglected phenomena of friction. Persson and his colleagues have now uncovered new velocity and temperature-dependent properties of rubber friction on asphalt -- bolstering the idea that an important component of friction originates when chains of rubber molecules repeatedly stick to the road, stretch, and then release. The... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED