MMaterialsgateNEWS 2017/03/02

Optical generation of ultrasound via photoacoustic effect

A group of University College London researchers have used tailored optoacoustic surface profiles to generate acoustic fields focused at multiple points using a single optical pulse

Limitations of the piezoelectric array technologies conventionally used for ultrasonics inspired a group of University College London researchers to explore an alternative mechanism for generating ultrasound via light, also known as the photoacoustic effect. Coupling this with 3-D printing, the group was able to generate sounds fields with specific shapes for potential use in biological cell manipulation and drug delivery.

Piezoelectric materials generate mechanical stress in response to an applied electric field, resulting in a usable and precisely controllable force that can, for example, be used to create sound waves. But achieving this control with conventional piezoelectric arrays requires both complicated electronics and large numbers of extremely small individual components which are expensive and difficult to manufacture.

The photoacoustic effect, in contrast, occurs when a short pulse or modulated source of light is absorbed by a material, producing a sound wave. As the group reports in this week's Applied Physics Letters, from AIP Publishing, their work focuses on using the photoacoustic effect to control ultrasound fields in 3-D.

"One useful feature of the photoacoustic effect is that the initial shape of the sound that's generated is determined [by] where the light is absorbed," said Michael Brown, a doctoral student at the Biomedical Ultrasound Group of the Department of Medical Physics and Biomedical Engineering at University College London. "This can be used to create tightly focused intense points of sound just by depositing an optical absorber on a concave surface, which acts like a lens."

More generally, it's possible to manufacture samples with nearly any surface shape by using a 3-D printer and a transparent material.

"By depositing an optical absorber on this surface, which can be done via spray painting, a sound wave of nearly any shape can be created by illuminating this sample with a laser," Brown said. "If you carefully tailor the design of the surface and therefore the shape of the acoustic wave, it's possible to control where the sound field will focus and even create fields focused over continuous shapes. We're using letters and numbers."

This is particularly significant because, in theory, the ability to control the shape of the wavefront -- the surface over which the sound wave has a constant phase, somewhat like the edge of the wave -- enables a large degree of control over the resulting field.

"But actually designing a wavefront that generates a desired pattern becomes more challenging as the complexity of the target increases," Brown said. "A clear 'best' design is only available for a few select cases, such as the generation of a single focus."

To overcome this limitation, the group "developed an algorithm that allows users to input a desired sound field in 3-D, and it then outputs a 3-D printable surface profile that generates this field," Brown said. "Our algorithm allows for precise control of the intensity of sound at different locations and the time at which the sound arrives, making it quick and easy to design surfaces or 'lenses' for a desired application."

Brown and his colleagues demonstrated the effectiveness of their algorithm by creating a lens designed to generate a sound field shaped like the numeral 7. After illuminating the lens by a pulsed laser, they recorded the sound field and the desired "7" was clearly visible with high contrast.

"It was the first demonstration of generating a multi-focal distribution of sound using this approach," Brown said.

There are many potential uses for the tailored optoacoustic profiles created by the group. "Highly intense sound can cause heating or exert forces on objects, such as in acoustic tweezers," Brown said. "And similar single-focus devices are already being used for cleaving cell clusters and targeted drug delivery, so our work could be useful within that area."

The group is also interested in the effects of propagating through tissue, which introduces distortions to the shape of wavefronts caused by variations in the speed of sound. "If the structure of the tissue is known beforehand via imaging, our approach can be used to correct for these aberrations," Brown said. "Manipulating the shape and time during which the focused sound is generated can also be useful for the maneuvering and controlling biological cells and other particles."

Going forward, Brown and his group hope to investigate the use of other light sources and what advantages they might offer.

"One limitation of our work was the use of a single-pulsed laser," Brown said. "This meant that the temporal shape of the sound generated from the sample was only one short pulse, which limited the complexity of the fields that could be generated. In the future, we're interested in using alternative modulated optical sources to illuminate these devices."

Source: American Institute of Physics – 28.02.2017.

The article, "Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles," is authored by Michael Brown, Daniil Nikitichev, Bradley E. Treeby and Ben Cox. The article will appear in the journal Applied Physics Letters Feb. 28, 2017 (DOI: 10.1063/1.4976942). After that date, it can be accessed at

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Tiny, soft, transparent nanofabricated devices turned into ultrasensitive microphones

A tiny, transparent device that can fit into a contact lens has a bright future, potentially helping a range of scientific endeavors from biomedicine to geology. Developed by Northwestern University scientists, the device, called the Micro-ring resonator detector, can determine the speed of the blood flow and the oxygen metabolic rate at the back of the eye. This information could help diagnose such common and debilitating diseases as macular degeneration and diabetes. The Micro-ring device builds upon Professor Hao F. Zhang's groundbreaking work in 2006 to develop photoacoustic imaging, which combines sound and light waves to create images of biological materials. The imaging technique... more read more

New technique to 'freeze' newly created microbubbles in their tracks could lead to new applications in medicine and the nuclear industry

Controlling bubbles is a difficult process and one that many of us experienced in a simplistic form as young children wielding a bubble wand, trying to create bigger bubbles without popping them. A research team in CINaM-CNRS Aix-Marseille Université in France has turned child's play into serious business. They demonstrated they could immobilize a microbubble created from water electrolysis as if the Archimedes' buoyant force that would normally push it to the surface didn't exist. This new and surprising phenomenon described this week in Applied Physics Letters, from AIP Publishing, could lead to applications in medicine, the nuclear industry or micromanipulation technology... more read more

The Fraunhofer Institute for Nondestructive Testing IZFP carries out research and development activities in the field of nondestructive testing processes along the entire materials value chain. For customers in the automobile, aerospace, rail, energy, construction and agriculture industries, the institute offers a wide range of NDT expertise and technologies.

From June 13 to 17, 2016, our researchers and engineers will present first results from measurements on a model suspension concerning purity characterization of Aluminium melts by ultrasonic scattering at the 19th World Conference on Non-Destructive Testing (WCNDT) in Munich. The use of Aluminium cast materials in industrial applications has a rising trend in Germany. One reason is the low density combined with the high specific mechanical strength. Another reason is the good machinability and corrosion resistance of this material group. The growing trend towards lightweight construction results in components made of aluminium casting alloys with wall thicknesses getting thinner and thinner... more read more

Using your skin as a touchscreen has been brought a step closer after UK scientists successfully created tactile sensations on the palm using ultrasound sent through the hand.

The University of Sussex-led study - funded by the Nokia Research Centre and the European Research Council - is the first to find a way for users to feel what they are doing when interacting with displays projected on their hand. This solves one of the biggest challenges for technology companies who see the human body, particularly the hand, as the ideal display extension for the next generation of smartwatches and other smart devices. Current ideas rely on vibrations or pins, which both need contact with the palm to work, interrupting the display. However, this new innovation, called SkinHaptics, sends sensations to the palm from the other side of the hand, leaving the palm free to... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED