MMaterialsgateNEWS 2018/02/07

Related MaterialsgateCARDS

A revolutionary material for aerospace and neuromorphic computing

Credit: © Jamani Caillet / EPFL

Vanadium dioxide’s unique properties make it perfect for outperforming silicon and giving rise to a new generation of low-power electronic devices.

Under the Phase Change Switch project (), which is being funded by the EU’s Horizon 2020 research program and coordinated by EPFL researchers, engineers have shown how this compound can be used to create programmable radiofrequency electronic functions for aerospace communication systems. Other applications – such as in neuromorphic computing and artificial intelligence – are also on the cards.

First came the switch. Then the transistor. Now another innovation stands to revolutionize the way we control the flow of electrons through a circuit: vanadium dioxide (VO2). A key characteristic of this compound is that it behaves as an insulator at room temperature but as a conductor at temperatures above 68°C. This behavior – also known as metal-insulator transition – is being studied in an ambitious EU Horizon 2020 project called Phase-Change Switch. EPFL was chosen to coordinate the project following a challenging selection process.

The project will last until 2020 and has been granted €3.9 million of EU funding. Due to the array of high-potential applications that could come out of this new technology, the project has attracted two major companies – Thales of France and the Swiss branch of IBM Research – as well as other universities, including Max-Planck-Gesellschaft in Germany and Cambridge University in the UK. Gesellschaft für Angewandte Mikro- und Optoelektronik (AMO GmbH), a spin-off of Aachen University in Germany, is also taking part in the research.

Scientists have long known about the electronic properties of VO2 but haven’t been able to explain them until know. It turns out that its atomic structure changes as the temperature rises, transitioning from a crystalline structure at room temperature to a metallic one at temperatures above 68°C. And this transition happens in less than a nanosecond – a real advantage for electronics applications. “VO2 is also sensitive to other factors that could cause it to change phases, such as by injecting electrical power, optically, or by applying a THz radiation pulse,” says Adrian Ionescu, the EPFL professor who heads the school’s Nanoelectronic Devices Laboratory (Nanolab) and also serves as the Phase-Change Switch project coordinator.

Reaching higher temperatures

However, unlocking the full potential of VO2 has always been tricky because its transition temperature of 68°C is too low for modern electronic devices, where circuits must be able to run flawlessly at 100°C. But two EPFL researchers – Ionescu from the School of Engineering (STI) and Andreas Schüler from the School of Architecture, Civil and Environmental Engineering (ENAC) – may have found a solution to this problem, according to their joint research published in Applied Physics Letters in July 2017. They found that adding germanium to VO2 film can lift the material’s phase change temperature to over 100°C.

Even more interesting findings from the Nanolab – especially for radiofrequency applications – were published in IEEE Access on 2 February 2018. For the first time ever, scientists were able to make ultra-compact, modulable frequency filters. Their technology also uses VO2 and phase-change switches, and is particularly effective in the frequency range crucial for space communication systems (the Ka band, with programmable frequency modulation between 28.2 and 35 GHz).

Neuromorphic processors and autonomous vehicles

These promising discoveries are likely to spur further research into applications for VO2 in ultra-low-power electronic devices. In addition to space communications, other fields could include neuromorphic computing and high-frequency radars for self-driving cars.

Source: Ecole Polytechnique Fédérale de Lausanne – 05.02.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: NTU Singapore

Scientists at Nanyang Technological University, Singapore (NTU Singapore) have created a customizable, fabric-like power source that can be cut, folded or stretched without losing its function.

Led by Professor Chen Xiaodong, Associate Chair (Faculty) at the School of Materials Science & Engineering, the team reported in the journal Advanced Materials (print edition 8 January) how they have created the wearable power source, a supercapacitor, which works like a fast-charging battery and can be recharged many times. Crucially, they have made their supercapacitor customizable or “editable”, meaning its structure and shape can be changed after it is manufactured, while retaining its function as a power source. Existing stretchable supercapacitors are made into predetermined designs and structures, but the new invention can be stretched multi-directionally, and is less likely... more read more

Credit: L. Brian Stauffer

Researchers have identified a mechanism that triggers shape-memory phenomena in organic crystals used in plastic electronics. Shape-shifting structural materials are made with metal alloys, but the new generation of economical printable plastic electronics is poised to benefit from this phenomenon, too.

Shape-memory materials science and plastic electronics technology, when merged, could open the door to advancements in low-power electronics, medical electronics devices and multifunctional shape-memory materials. The findings are published in the journal Nature Communications and confirm the shape-memory phenomenon in two organic semiconductors materials. Devices like the expandable stents that open and unblock clogged human blood vessels use shape-memory technology. Heat, light and electrical signals, or mechanic forces pass information through the devices telling them to expand, contract, bend and morph back into their original form – and can do so repeatedly, like a snake constricting... more read more

Credit: Christopher Gannon

New graphene printing technology can produce electronic circuits that are low-cost, flexible, highly conductive and water repellent.

The nanotechnology “would lend enormous value to self-cleaning wearable/washable electronics that are resistant to stains, or ice and biofilm formation,” according to a recent paper describing the discovery. “We’re taking low-cost, inkjet-printed graphene and tuning it with a laser to make functional materials,” said Jonathan Claussen, an Iowa State University assistant professor of mechanical engineering, an associate of the U.S. Department of Energy’s Ames Laboratory and the corresponding author of the paper recently featured on the cover of the journal Nanoscale. The paper describes how Claussen and the nanoengineers in his research group use inkjet printing technology to... more read more

Credit: © 2017 Muhammad M. Hussain

Wavy transistors that vertically gain width without increasing their on-chip footprint could drive future flexible displays.

Flexible ultrahigh resolution displays have benefits for next-generation mobile electronics, such as point-of-care medical diagnostic devices. KAUST has developed a unique transistor architecture that boosts the performance of the display circuitry. Flat-panel displays implemented in smart watches, mobile devices and televisions rely on planar transistor circuits to achieve high-resolution and fast imaging. In these circuits, thin-film transistors, acting as switches, control the electric current that activates individual image elements, or pixels, consisting of light-emitting diodes (LEDs) or liquid crystals. Future displays are expected to offer an even better visual experience through... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED