MMaterialsgateNEWS 2012/10/08

Related MaterialsgateCARDS

A complete solution for oil-spill cleanup

Scientists are describing what may be a "complete solution" to cleaning up oil spills — a superabsorbent material that sops up 40 times its own weight in oil and then can be shipped to an oil refinery and processed to recover the oil. Their article on the material appears in ACS' journal Energy & Fuels.

T. C. Mike Chung and Xuepei Yuan point out that current methods for coping with oil spills like the 2010 Deepwater Horizon disaster are low-tech, decades-old and have many disadvantages. Corncobs, straw and other absorbents, for instance, can hold only about 5 times their own weight and pick up water, as well as oil. Those materials then become industrial waste that must be disposed of in special landfills or burned.

Their solution is a polymer material that transforms an oil spill into a soft, solid oil-containing gel. One pound of the material can recover about 5 gallons of crude oil. The gel is strong enough to be collected and transported. Then, it can be converted to a liquid and refined like regular crude oil. That oil would be worth $15 when crude oil sells for $100 a barrel. "Overall, this cost-effective new polyolefin oil-SAP technology shall dramatically reduce the environmental impacts from oil spills and help recover one of our most precious natural resources," the authors said.

Source: American Chemical Society – 03.10.2012.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

A carbon nanotube sponge that can soak up oil in water with unparalleled efficiency has been developed with help from computational simulations performed at the Department of Energy's (DOE's) Oak Ridge National Laboratory.

Carbon nanotubes, which consist of atom-thick sheets of carbon rolled into cylinders, have captured scientific attention in recent decades because of their high strength, potential high conductivity and light weight. But producing nanotubes in bulk for specialized applications was often limited by difficulties in controlling the growth process as well as dispersing and sorting the produced nanotubes. ORNL's Bobby Sumpter was part of a multi-institutional research team that set out to grow large clumps of nanotubes by selectively substituting boron atoms into the otherwise pure carbon lattice. Sumpter and Vincent Meunier, now of Rensselaer Polytechnic Institute, conducted simulations... more read more

Researchers at Rice University and Penn State University have discovered that adding a dash of boron to carbon while creating nanotubes turns them into solid, spongy, reusable blocks that have an astounding ability to absorb oil spilled in water.

That’s one of a range of potential innovations for the material created in a single step. The team found for the first time that boron puts kinks and elbows into the nanotubes as they grow and promotes the formation of covalent bonds, which give the sponges their robust qualities. The researchers, who collaborated with peers in labs around the nation and in Spain, Belgium and Japan, revealed their discovery in Nature’s online open-access journal Scientific Reports. Lead author Daniel Hashim, a graduate student in the Rice lab of materials scientist Pulickel Ajayan, said the blocks are both superhydrophobic (they hate water, so they float really well) and oleophilic (they love oil... more read more

More on this topic:

Case Western Reserve University engineers target industry to oceans

An ultra-lightweight sponge made of clay and a bit of high-grade plastic draws oil out of contaminated water but leaves the water behind. And, lab tests show that oil absorbed can be squeezed back out for use. Case Western Reserve University researchers who made the material, called an aerogel, believe it will effectively clean up spills of all kinds of oils and solvents on factory floors and roadways, rivers and oceans. The EPA estimates that 10 to 25 million gallons of oil are spilled annually in this country alone. Spilled oil ruins drinking water, is a fire and explosion hazard, damages farmland and beaches and destroys wildlife and habitats. The harm can last decades. The aerogel... more read more

Nanowire mesh can absorb up to 20 times its weight in oil

A mat of nanowires with the touch and feel of paper could be an important new tool in the cleanup of oil and other organic pollutants, MIT researchers and colleagues report in the May 30 online issue of Nature Nanotechnology. The scientists say they have created a membrane that can absorb up to 20 times its weight in oil, and can be recycled many times for future use. The oil itself can also be recovered. Some 200,000 tons of oil have already been spilled at sea since the start of the decade. "What we found is that we can make 'paper' from an interwoven mesh of nanowires that is able to selectively absorb hydrophobic liquids--oil-like liquids--from water," said Francesco... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED