MMaterialsgateNEWS 2016/11/09

Rewritable material could help reduce paper waste

ACS Applied Materials & Interfaces:

Even in today’s digital age, the world still relies on paper and ink, most of which ends up in landfills or recycling centers. To reduce this waste, scientists have now developed a low-cost, environmentally friendly way to create printed materials with rewritable paper. Their report on the material, which is made out of tungsten oxide and a common polymer used in medicines and food, appears in the journal ACS Applied Materials & Interfaces.

The U.S. has been working to reduce paper waste by increasing recycling efforts for years. According to the Environmental Protection Agency, more paper is now recovered for recycling than almost all other materials combined. This saves energy, water, landfill space and greenhouse gas emissions. But even more waste could be avoided if consumers could reuse paper many times before recycling or trashing it. So far, however, such products under development often are made with toxic, expensive organic dyes. Ting Wang, Dairong Chen and colleagues wanted to come up with a better solution.

The researchers created a film by mixing low-toxicity tungsten oxide with polyvinyl pyrrolidone. To “print” on it, they exposed the material to ultraviolet light for 30 seconds or more, and it changed from white to a deep blue. To make pictures or words, a stencil can be used so that only the exposed parts turn blue. To erase them, the material can simply sit in ambient conditions for a day or two. To speed up the erasing, the researchers added heat to make the color disappear in 30 minutes. Alternatively, adding a small amount of polyacrylonitrile to the material can make designs last for up to 10 days. Testing showed the material could be printed on and erased 40 times before the quality started to decline.

Source: American Chemical Society – 02.11.2016.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Less than a micrometre thin, bendable and giving all the colours that a regular LED display does, it still needs ten times less energy than a Kindle tablet.

Researchers at Chalmers University of Technology have developed the basis for a new electronic "paper". Their results were recently published in the high impact journal Advanced Materials. When Chalmers researcher Andreas Dahlin and his PhD student Kunli Xiong were working on placing conductive polymers on nanostructures, they discovered that the combination would be perfectly suited to creating electronic displays as thin as paper. A year later the results were ready for publication. A material that is less than a micrometre thin, flexible and giving all the colours that a standard LED display does. "The 'paper' is similar to the Kindle tablet", says Andreas... more read more

The researchers in Jonathan Claussen's lab at Iowa State University have been looking for ways to use graphene and its amazing properties in their sensors and other technologies.

Graphene is a wonder material: The carbon honeycomb is just an atom thick. It's great at conducting electricity and heat; it's strong and stable. But researchers have struggled to move beyond tiny lab samples for studying its material properties to larger pieces for real-world applications. Recent projects that used inkjet printers to print multi-layer graphene circuits and electrodes had the engineers thinking about using it for flexible, wearable and low-cost electronics. For example, "Could we make graphene at scales large enough for glucose sensors?" asked Suprem Das, an Iowa State postdoctoral research associate in mechanical engineering and an associate of the U... more read more

A piece of paper is one of the most common, versatile daily items. Children use it to draw their favorite animals and practice writing the A-B-Cs, and adults print reports or scribble a hasty grocery list.

Now, connecting real-world items such as a paper airplane or a classroom survey form to the larger Internet of Things environment is possible using off-the-shelf technology and a pen, sticker or stencil pattern. Researchers from the University of Washington, Disney Research and Carnegie Mellon University have created ways to give a piece of paper sensing capabilities that allows it to respond to gesture commands and connect to the digital world. The method relies on small radio frequency (RFID) tags that are stuck on, printed or drawn onto the paper to create interactive, lightweight interfaces that can do anything from controlling music using a paper baton, to live polling in a classroom... more read more

An organic mixed ion-electron conductor for power electronics

Researchers at Linköping University's Laboratory of Organic Electronics, Sweden, have developed power paper -- a new material with an outstanding ability to store energy. The material consists of nanocellulose and a conductive polymer. The results have been published in Advanced Science. One sheet, 15 centimetres in diameter and a few tenths of a millimetre thick can store as much as 1 F, which is similar to the supercapacitors currently on the market. The material can be recharged hundreds of times and each charge only takes a few seconds. It's a dream product in a world where the increased use of renewable energy requires new methods for energy storage -- from summer to winter... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products