MMaterialsgateNEWS 2016/08/09

Related MaterialsgateCARDS

Shape-changing metamaterial developed using Kirigami technique

Engineers from the University of Bristol have developed a new shape-changing metamaterial using Kirigami, which is the ancient Japanese art of cutting and folding paper to obtain 3D shapes.

Metamaterials are a class of material engineered to produce properties that don’t occur naturally. Currently metamaterials are used to make artificial electromagnetic and vibration absorbers and high-performance sensors. Kirigami can be applied to transform two-dimensional sheet materials into complex three-dimensional shapes with a broader choice of geometries than 'classical' origami.

The research, developed within a PhD programme run by the University's EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science (ACCIS CDT), is published today in Scientific Reports.

The type of mechanical metamaterials using the Kirigami technique, developed by PhD student Robin Neville, changes shape seamlessly, exhibits large variations in mechanical performance with small geometry changes, and can be adapted to modify its configuration by using mainstream actuation mechanisms.

The Kirigami metamaterial can also be produced using off-the-shelf thermoplastic or thermoset composite materials, and different sensing and electronics systems can be embedded to obtain a fully integrated smart shape-changing structure.

Fabrizio Scarpa, Professor of Smart Materials and Structures in the Department of Aerospace Engineering and ACCIS, said: "Mechanical metamaterials exhibit unusual properties through the shape and deformation of their engineered subunits. Our research presents a new investigation of the kinematics of a family of cellular metamaterials based on Kirigami design principles. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties."

Robin Neville, PhD student, added: "By combining analytical models and numerical simulations we have demonstrated how these Kirigami cellular metamaterials can change their deformation characteristics. We have also shown the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures."

In the future, this Kirigami metamaterial could be used in robotics, morphing structures for airframe and space applications, microwave and smart antennas.

Source: University of Bristol – 05.08.2016

Paper:

]

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

A new disposable battery that folds like an origami ninja star could power biosensors and other small devices for use in challenging field conditions, says an engineer at Binghamton University, State University of New York.

Seokheun "Sean" Choi, assistant professor of computer and electrical engineering at Binghamton University, along with two of his students, developed the device, a microbial fuel cell that runs on the bacteria available in a few drops of dirty water. They report on their invention in a new paper published online in the journal Biosensors and Bioelectronics. Choi previously developed a paper-based origami battery. The first design, shaped like a matchbook, stacked four modules together. The ninja star version, which measures about 2.5 inches wide, boasts increased power and voltage, with eight small batteries connected in series. "Last time, it was a proof of concept. The... more read more

Simple origami fold may hold the key to designing pop-up furniture, medical devices and scientific tools

What if you could make any object out of a flat sheet of paper? That future is on the horizon thanks to new research by L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, Organismic and Evolutionary Biology, and Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). He is also a core faculty member of the Wyss Institute for Biologically Inspired Engineering, and member of the Kavli Institute for Bionano Science and Technology, at Harvard University. Mahadevan and his team have characterized a fundamental origami fold, or tessellation, that could be used as a building block to create almost any three-dimensional shape, from nanostructures... more read more

Strategic 'Kirigami cuts' in advanced materials result in strength, not failure

A cut or tear in a material is typically a sign of weakness. Now, a Northwestern University, University of Illinois and Tsinghua University research team has created complex 3-D micro- and nanostructures out of silicon and other materials found in advanced technologies using a new assembly method that uses cuts to advantage. The Kirigami method builds on the team's "pop-up" fabrication technique -- going from a 2-D material to 3-D in an instant, like a pop-up children's book -- reported earlier this year in the journal Science. While an innovative first step, those earlier ribbon-like structures yielded open networks, with limited ability to achieve closed-form shapes... more read more

From shipping and construction to outer space, origami could put a folded twist on structural engineering.

Researchers from the University of Illinois at Urbana-Champaign, the Georgia Institute of Technology and the University of Tokyo have developed a new "zippered tube" configuration that makes paper structures that are stiff enough to hold weight yet can fold flat for easy shipping and storage. Their method could be applied to other thin materials, such as plastic or metal, to transform structures from furniture to buildings to microscopic robots. Illinois graduate researcher Evgueni Filipov, Georgia Tech professor Glaucio Paulino and University of Tokyo professor Tomohiro Tachi published their work in the Proceedings of the National Academy of Sciences. Origami structures would... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED