MMaterialsgateNEWS 2018/03/21

Modified Biomaterials Self-Assemble on Temperature Cues

Credit: Davoud Mozhdehi and Kelli Luginbuhl

Precisely ordered biomaterials could be used for drug delivery, tissue engineering and wound-healing

Biomedical engineers from Duke University have demonstrated a new approach to making self-assembled biomaterials that relies on protein modifications and temperature. The hybrid approach allows researchers to control self-assembly more precisely, which may prove useful for a variety of biomedical applications from drug delivery to wound healing.

Biomaterials have broad applications across the fields of tissue engineering, regenerative medicine and drug delivery. Protein- and peptide-based materials are attractive for these applications because they are non-toxic, biodegradable and have a well-defined composition. But these biomaterials are limited to the 20 amino acids found in nature.

One strategy to expand the chemical diversity of protein-based materials is post-translational modification (PTM), a powerful set of reactions that nature uses to chemically transform proteins after they are synthesized from genes. PTM can modify specific amino acids in proteins or add non-protein structures, such as sugars and fatty acids.

“Nature combines different chemical alphabets to make very sophisticated materials,” said Ashutosh Chilkoti, the chair of the BME department at Duke and primary author of the paper. “One way it does this is by combining the amino acid vocabulary of proteins with other very different alphabets -- sugars and fats are just two examples of the many hundreds of such PTMs. As materials scientists, we have not taken advantage of nature’s methods to make hybrid materials, and this provided the inspiration for this research.”

To make such a hybrid material with useful biomedical properties, researchers in the Chilkoti lab focused on creating a series of lipid-modified polypeptides, also called fatty-acid-modified elastin-like polypeptides, or FAMEs.

When a lipid is fused to a peptide sequence, the different physical properties of the lipid and peptide result in the formation peptide amphiphiles, or PAs. Typical PAs can self-assemble into diverse structures like long fibers, making them useful as scaffolds for tissue engineering. However, this happens spontaneously and these materials cannot be injected into the body but instead have to be implanted.

The research team added another useful biomaterial, elastin-like polypeptide (ELP), because it can change from a soluble state to an insoluble state, or vice-versa, depending on temperature.

Using three components –– a lipid myristoyl group‚ a beta-sheet-forming peptide sequence, and an elastin-like polypeptide (ELP) -- the researchers created a hybrid biomaterial, the FAME polypeptide, that changes from molecules floating in solution into a solid material, simply by raising the temperature.

“Attachment of lipids to short sequence of peptides, typically 5-20 amino acids, have been investigated for many years, but combining large biopolymers with lipids had not been explored,” said Davoud Mozhdehi, a postdoctoral fellow in the Chilkoti lab. “What distinguishes FAMEs from PAs is the presence of this temperature-sensitive biopolymer with much longer length, typically 200-600 amino acids, in the form of the ELP.”

“That short beta sheet-forming peptide sequence only makes up about two percent of the entire sequence,” Mozhdehi said. “But it has a huge impact on the self-assembly behavior. This hybrid material retains thermal responsiveness of the ELP and the hierarchical self-assembly of the PA, creating a unique material with programmable behavior.”

“By combining a PA with an ELP, we get a molecule that can go from liquid to solid within seconds with a small rise in temperature”, said Chilkoti. “This opens up new applications in medicine, where a these materials can be injected as a liquid that would then turn into solid inside the body.”

This proof-of-concept builds upon previous research from the Chilkoti lab, in which researchers explored new ways to use enzymes to synthesize hybrid lipid-peptide polymer fusions between ELPs and lipids using E. coli bacteria.

“Others had previously found that you can take a specific enzyme out of complex eukaryotic cells and get it to function in E. coli,” said Kelli Luginbuhl, a research scientist in the Chilkoti lab. “Normally, this enzyme permanently attaches a lipid group to a protein, and we were curious whether we could use the enzyme to make lipid-biopolymer hybrid materials. When Davoud Mozhdehi heard about this project, he had an idea to incorporate a short structure-directing peptide sequence into the mix.”

Researchers at the Max Planck Institute for Polymer Research aided the Duke team by completing advanced material characterization. “Upon hearing about the multiple structures formed by these biomanufactured polymers, we were quite excited to participate in this collaborative project to further elucidate the mechanism of temperature-triggered hydrogel and aggregate formation in these materials,” the Max Planck team said in a statement. “Our contribution of temperature-dependent, high-resolution atomic force microscopy and temperature-dependent spectroscopy nicely complemented the work from the Duke group, and together we were able to decipher the molecular transformations by which these unique biopolymers form hierarchical materials.”

“These building blocks are known in the field and now we have shown that combining them by forming covalent bonds, results in synergistic properties and self-assembly,” Mozhdehi said. “We hope to expand this method to other lipids and proteins and develop new tools and materials for the biomedical applications.”

Source: Duke University – 19.03.2018.


“Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly,” Davoud Mozhdehi, Kelli Luginbuhl, Joseph R. Simon, Michael Dzuricky, Rudiger Berger, H. Samet Varol, Fred C. Huang, Kristen L Buehne, Nicholas R. Mayne, Isaac Weitzhandler, Mischa Bonn, Sapun H. Parekh, and Ashutosh Chilkoti. Nature Chemistry, online March 19, 2018. DOI 10.1038/s41557-018-0005-z

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Rob Felt, Georgia Tech

Process could improve medical implants and food processing

By using an electrochemical etching process on a common stainless steel alloy, researchers have created a nanotextured surface that kills bacteria while not harming mammalian cells. If additional research supports early test results, the process might be used to attack microbial contamination on implantable medical devices and on food processing equipment made with the metal. While the specific mechanism by which the nanotextured material kills bacteria requires further study, the researchers believe tiny spikes and other nano-protrusions created on the surface puncture bacterial membranes to kill the bugs. The surface structures don’t appear to have a similar effect on mammalian cells... more read more

Credit: Penn State

An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution.

Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans. These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering... more read more

Credit: Wong Lab / Brown University

The temporary structures, which can be degraded away with a biocompatible chemical trigger, could be useful in fabricating microfluidic devices, creating biomaterials that respond dynamically to stimuli and in patterning artificial tissue.

Brown University engineers have demonstrated a technique for making 3-D-printed biomaterials that can degrade on demand, which can be useful in making intricately patterned microfluidic devices or in making cell cultures than can change dynamically during experiments. “It’s a bit like Legos,” said Ian Wong, an assistant professor in Brown’s School of Engineering and co-author of the research. “We can attach polymers together to build 3-D structures, and then gently detach them again under biocompatible conditions.” The research is published in the journal Lab on a Chip. The Brown team made their new degradable structures using a type of 3-D printing called stereolithography... more read more

3-D printable ink produces a synthetic bone filler that induces bone regeneration

A Northwestern Engineering research team has developed a 3-D printable ink that produces a synthetic bone implant that rapidly induces bone regeneration and growth. This hyperelastic “bone” material, whose shape can be easily customized, one day could be especially useful for the treatment of bone defects in children. Bone implantation surgery is never an easy process, but it is particularly painful and complicated for children. With both adults and children, often times bone is harvested from elsewhere in the body to replace the missing bone, which can lead to other complications and pain. Metallic implants are sometimes used, but this is not a permanent fix for growing children... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products