MMaterialsgateNEWS 2012/07/02

Related MaterialsgateCARDS

Energy: Clothing the body electric

Over the years, the telephone has gone mobile, from the house to the car to the pocket. The University of South Carolina's Xiaodong Li envisions even further integration of the cell phone – and just about every electronic gadget, for that matter – into our lives.

He sees a future where electronics are part of our wardrobe.

"We wear fabric every day," said Li, a professor of mechanical engineering at USC. "One day our cotton T-shirts could have more functions; for example, a flexible energy storage device that could charge your cell phone or your iPad."

Li is helping make the vision a reality. He and post-doctoral associate Lihong Bao have just reported in the journal Advanced Materials how to turn the material in a cotton T-shirt into a source of electrical power.

Starting with a T-shirt from a local discount store, Li's team soaked it in a solution of fluoride, dried it and baked it at high temperature. They excluded oxygen in the oven to prevent the material from charring or simply combusting.

The surfaces of the resulting fibers in the fabric were shown by infrared spectroscopy to have been converted from cellulose to activated carbon. Yet the material retained flexibility; it could be folded without breaking.

"We will soon see roll-up cell phones and laptop computers on the market," Li said. "But a flexible energy storage device is needed to make this possible."

The once-cotton T-shirt proved to be a repository for electricity. By using small swatches of the fabric as an electrode, the researchers showed that the flexible material, which Li's team terms activated carbon textile, acts as a capacitor. Capacitors are components of nearly every electronic device on the market, and they have the ability to store electrical charge.

Moreover, Li reports that activated carbon textile acts like double-layer capacitors, which are also called a supercapacitors because they can have particularly high energy storage densities.

But Li and Bao took the material even further than that. They then coated the individual fibers in the activated carbon textile with “nanoflowers” of manganese oxide. Just a nanometer thick, this layer of manganese oxide greatly enhanced the electrode performance of the fabric. "This created a stable, high-performing supercapacitor," said Li.

This hybrid fabric, in which the activated carbon textile fibers are coated with nanostructured manganese oxide, improved the energy storage capability beyond the activated carbon textile alone. The hybrid supercapacitors were resilient: even after thousands of charge-discharge cycles, performance didn't diminish more than 5 percent.

"By stacking these supercapacitors up, we should be able to charge portable electronic devices such as cell phones," Li said.

Li is particularly pleased to have improved on the means by which activated carbon fibers are usually obtained. "Previous methods used oil or environmentally unfriendly chemicals as starting materials," he said. "Those processes are complicated and produce harmful side products. Our method is a very inexpensive, green process."

Source: University of South Carolina – 28.06.2012.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Scientists at la Universidad Carlos III de Madrid (UC3M - Carlos III University in Madrid) who participate in the LOBIN consortium have developed an “intelligent” t- shirt that monitors the human body (temperature, heart rate, etc.) and locates patients within the hospital, as if it were a GPS system that works in closed spaces; it can even determine if the subject is seated, lying down, walking or running.

Using this garment-based patient biomonitoring platform allows us to register a number of the patient’s physiological parameters in a non-intrusive manner. “The information gathered by an intelligent t-shirt using e-textile technology is sent, without using wires, to an information management system, which then shows the patient’s location and vital signs in real time”, explain the UC3M researchers. The system is designed to be used in hospitals and can be divided into two parts: the fixed infrastructure, which would be pre-installed in the hospital, and the mobile units, which would move with the patients. The mobile units include an “intelligent t-shirt” and a localization... more read more

Consider this T-shirt: It can monitor your heart rate and breathing, analyze your sweat and even cool you off on a hot summer's day. What about a pillow that monitors your brain waves, or a solar-powered dress that can charge your ipod or MP4 player? This is not science fiction – this is cotton in 2010.

Now, the laboratory of Juan Hinestroza, assistant professor of Fiber Science and Apparel Design, has developed cotton threads that can conduct electric current as well as a metal wire can, yet remain light and comfortable enough to give a whole new meaning to multi-use garments. This technology works so well that simple knots in such specially treated thread can complete a circuit – and solar-powered dress with this technology literally woven into its fabric will be featured at the annual Cornell Design League Fashion Show on Saturday, March 13 at Cornell University's Barton Hall. Using multidisciplinary nanotechnology developed at Cornell in collaboration with the universities at... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED