MMaterialsgateNEWS 2017/06/07

Related MaterialsgateCARDS

New Sound Diffuser Is 10 Times Thinner Than Existing Designs

Credit: Yun Jing

Researchers from North Carolina State University and Nanjing University have developed an “ultra-thin” sound diffuser that is 10 times thinner than the widely used diffusers found in recording studios, concert venues and movie theaters to reduce echoes and improve the quality of sound.

The new design uses less material, which would reduce cost, as well as taking up far less space.

In a typical room with flat walls, sound waves usually bounce off the walls, like light reflecting off a mirror. This creates echoes and overlapping sound waves that result in uneven sound quality depending on where you are in the room.

“Sound diffusers are panels placed on the walls and ceiling of a room to scatter sound waves in many different directions, eliminating echoes and undesirable sound reflections – ultimately improving the quality of the sound,” says Yun Jing, an assistant professor of mechanical and aerospace engineering at NC State and corresponding author of a paper on the work.

But the most widely used diffusers, called Schroeder diffusers, can be very bulky. That’s because the size of a diffuser is governed by the wavelength of the sound it needs to diffuse. Specifically, the depth of a Schroeder diffuser is about half of the wavelength of the lowest sound it needs to diffuse.

For example, a typical man’s voice can be as low as 85 hertz, with a wavelength of 4 meters or 13.1 feet. If that’s the lowest sound the Schroeder diffuser will have to deal with, the diffuser would need to be roughly 2 meters – or just over 6.5 feet – thick.

But the new, ultra-thin diffuser design requires a thickness that is only 5 percent of the sound’s wavelength. So, instead of being 2 meters thick, it would only be 20 centimeters – or less than 8 inches – thick.

“Diffusers are often made out of wood, so our design would use 10 times less wood than the Schroeder diffuser design,” Jing says. “That would result in lighter, less expensive diffusers that allow people to make better use of their space.”

This reduction in diffuser thickness is made possible by the design of the individual cells in the diffuser.

A Schroeder diffuser looks like a panel of evenly spaced squares, which are identical in length and width, but vary in depth.

The ultra-thin diffuser also consists of evenly spaced squares, but the squares appear to be of different sizes. That’s because each of the squares is actually an aperture that opens into a thin, underlying chamber. These chambers all have identical dimensions, but the size of the apertures varies significantly – accomplishing the same sound diffusion as the much larger Schroeder diffusers.

“We’ve built fully functional prototypes using a 3-D printer, and it works,” Jing says. “The design should work just as well using wood.”

Source: North Carolina State University – 06.06.2017.

The paper, “Ultra-thin Acoustic Metasurface-Based Schroeder Diffuser,” is published in the American Physical Society journal Physical Review X. Lead authors of the study are Yifan Zhu and Xudong Fan of Nanjing University. The paper was co-authored by Bin Liang and Jianchun Cheng of Nanjing University.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

A group of University College London researchers have used tailored optoacoustic surface profiles to generate acoustic fields focused at multiple points using a single optical pulse

Limitations of the piezoelectric array technologies conventionally used for ultrasonics inspired a group of University College London researchers to explore an alternative mechanism for generating ultrasound via light, also known as the photoacoustic effect. Coupling this with 3-D printing, the group was able to generate sounds fields with specific shapes for potential use in biological cell manipulation and drug delivery. Piezoelectric materials generate mechanical stress in response to an applied electric field, resulting in a usable and precisely controllable force that can, for example, be used to create sound waves. But achieving this control with conventional piezoelectric arrays requires... more read more

Layer of microscopic spheres offers new approach to controlling acoustic waves.

In some ways, granular material — such as a pile of sand — can behave much like a crystal, with its close-packed grains mimicking the precise, orderly arrangement of crystalline atoms. Now researchers at MIT have pushed that similarity to a new limit, creating two-dimensional arrays of micrograins that can funnel acoustic waves, much as specially designed crystals can control the passage of light or other waves. The researchers say the findings could lead to a new way of controlling frequencies in electronic devices such as cellphones, but with components that are only a fraction the size of those currently used for that function. On a larger scale, it could lead to new types of blast... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products