MMaterialsgateNEWS 2017/07/20

The glass transition caught in the act

Islands of cooperating atoms jam like ice floes as a liquid becomes like glass

We learn in school that matter comes in three states: solid, liquid and gas. A bored and clever student (we’ve all met one) then sometimes asks whether glass is a solid or a liquid.

The student has a point. Glasses are weird “solid liquids” that are cooled so fast their atoms or molecules jammed before organizing themselves in the regular patterns of a crystalline solid. So a glass has the mechanical properties of a solid but its atoms or molecules are disorganized, like those in a liquid.

One sign of the weirdness of glass is that the transition from liquid to a glass is much fuzzier than the transition from liquid to crystalline solid. In fact, the glass transition is arbitrarily defined as the point where the glass-forming material has a viscosity of 1013 poise. (The viscosity of water at room temperature is about 0.01 poise. A thick oil might have a viscosity of about 1.0 poise.) At this point, it is too thick to flow and so meets the practical definition of a solid.

Scientists hate definitions this vague, but they’ve been stuck with this one because nobody really understood the glass transition, which frequently makes it onto lists of the top-10 unsolved problems in physics.

For the most part, scientists have been able to measure only bulk properties of glass-forming liquids, such as viscosity and specific heat, and the interpretations they came up with depended in part on the measurements they took. The glass literature is notoriously full of contradictory findings and workshops about glass are the venue for lively debate.

But in the past fifteen years, new experimental setups that scatter X-rays or neutrons off the atoms in a droplet of liquid that is held without a container (which would provoke it to crystallize) have allowed scientists at long last to measure the atomic properties of the liquid. And that is the level at which they suspect the secrets of the glass transition are hidden.

In one such study, Ken Kelton, the Arthur Holly Compton Professor in Arts & Sciences at Washington University in St. Louis, and his research team (Chris Pueblo, Washington University and Minhua Sun, Harbin Normal University, China) compared a measure of the interaction of atoms for different glass-forming liquids. Their results, published online in Nature Materials, reconcile several measures of glass formation, a sign that they are on the right track.

“We have shown that the concept of fragile and strong liquids, which was invented to explain why viscosity changes in markedly different ways as a liquid cools, actually goes much deeper than just the viscosity,” Kelton said. “It is ultimately related to the repulsion between atoms, which limits their ability to move cooperatively. This is why the distinction between fragile and strong liquids also appears in structural properties, elastic properties and dynamics. They’re all just different manifestations of that atomic interaction.”

This is the first time the connection between viscosity and atomic interactions has been demonstrated experimentally, he said. Intriguingly, his studies and work by others suggest that the glass transition begins not at the conventional glass transition temperature but rather at a temperature approximately two times higher in metallic glasses (more than two times higher in the silicate glasses, such as window glass). It is at that point, Kelton said, the atoms first begin to move cooperatively.

Drilling down to the atomic level

Kelton’s latest discoveries follow earlier investigations of a characteristic of glass-forming liquids called fragility. To most people, all glasses are fragile, but to physicists some are “strong” and others are “fragile.”

The distinction was first introduced in 1995 by Austen Angell, a professor of chemistry at Arizona State University, who felt that a new term was needed to capture dramatic differences in the way a liquid’s viscosity increases as it approaches the glass transition.

The viscosities of some liquids change gradually and smoothly as they approach this transition. But as other liquids are cooled, their viscosity changes very little at first, but then take off like a rocket as the transition temperature approaches.

At the time, Angell could only measure viscosity, but he called the first type of liquid “strong” and the second type “fragile” because he suspected a structural difference underlay the differences that he saw,

“It’s easier to explain what he meant if you think of a glass becoming a liquid rather than the other way around,” Kelton said. “Suppose a glass is heated through the glass transition temperature. If it’s a ‘strong’ system, it ‘remembers’ the structure it had as a glass—which is more ordered than in a liquid—and that tells you that the structure does not change much through the transition. In contrast, a ‘fragile’ system quickly ‘forgets’ its glass structure, which tells you that its structure changes a lot through the transition.

“People argued that the change in viscosity had to be related to the structure — through several intermediate concepts, some of which are not well defined,” Kelton added. “What we did was hop over these intermediate steps to show directly that fragility was related to structure.”

In 2014, he with members of his group published in Nature Communications the results of experiments that showed that the fragility of a glass-forming liquid is reflected in something called the structure factor, a quantity measured by scattering X-rays off a droplet of liquid that contains information about the position of the atoms in the droplet.

“It was just as Angell had suspected,” Kelton said. “The rate of atomic ordering in the liquid near the transition temperature determines whether a liquid is ‘fragile’ or ‘strong.'”

Sharp little atomic elbows

But Kelton wasn’t satisfied. Other scientists were finding correlations between the fragility of a liquid and its elastic properties and dynamics, as well as its structure. “There has to be something in common,” he thought. “What’s the one thing that could underlie all of these things?” The answer, he believed, had to be the changing attraction and repulsion between atoms as they moved closer together, which is called the atomic interaction potential.

If two atoms are well separated, Kelton explained, there is little interaction between them and the interatomic potential is nearly zero. When they get closer together, they are attracted to one another for a variety of reasons. The potential energy goes down, becoming negative (or attractive). But then as they move closer still, the cores of the atoms start to interact, repelling one another. The energy shoots way up.

“It’s that repulsive part of the potential we were seeing in our experiments,” Kelton said.

What they found when they measured the repulsive potential of 10 different metallic alloys at the Advanced Photon Source, a beamline at Argonne National Laboratory, is that “strong” liquids have steeper repulsive potentials and the slope of their repulsive potential changes more rapidly that of “fragile” ones. “What this means,” Kelton said, “is that ‘strong’ liquids order more rapidly at high temperatures than ‘fragile’ ones. That is the microscopic underpinning of Angell’s fragility.

“What’s interesting,” Kelton continued, “is that we see atoms beginning to respond cooperatively — showing awareness of one another — at temperatures approximately double the glass transition temperature and close to the melting temperature.

“That’s where the glass transition really starts,” he said. “As the liquid cools more and more, atoms move cooperatively until rafts of cooperation extend from one side of the liquid to the other and the atoms jam. But that point, the conventional glass transition, is only the end point of a continuous process that begins at a much higher temperature.”

Kelton will soon attend a workshop in Poland where he expects lively discussion of his findings, which contradict those of some of his colleagues. But he is convinced that he has hold of the thread that will lead out of the labyrinth because different levels of understanding are beginning to line up. “It’s exciting that things are coming together so well,” he said.

Source: Washington University in St. Louis – 17.07.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics

Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries. The batteries will extend the range of electric vehicles and plug-in hybrid electric vehicles, and provide more power with fewer charges to personal electronics like cell phones and laptops. Titled "Silicon Derived from Glass Bottles as Anode Materials for Lithium Ion Full Cell Batteries," an article describing the research was published today in the Nature journal Scientific Reports. Cengiz Ozkan, professor of mechanical engineering, and Mihri Ozkan, professor... more read more

A new method uncovers a 4-decade mystery about metallic glass that could allow researchers to fine-tune its properties to develop new materials

An international collaboration involving Hokkaido University's high-voltage electron microscope has solved a puzzle about the atomic structure of metallic glasses that has baffled scientists for four decades. Unlike crystalline alloys, atoms in metallic glasses are randomly organized, a structure called amorphous. This makes them stronger, more flexible and resistant to corrosion. Due to these excellent physical properties, they are used in sports equipment, medical devices and electricity transformers. But improving their properties requires a better understanding of their atomic structure. In 1976, researchers used a technique, called differential scanning calorimetry, to measure... more read more

Brigham Young University researchers have developed new glass technology that could add a new level of flexibility to the microscopic world of medical devices.

Led by electrical engineering professor Aaron Hawkins, the researchers have found a way to make the normally brittle material of glass bend and flex. The research opens up the ability to create a new family of lab-on-a-chip devices based on flexing glass. "If you keep the movements to the nanoscale, glass can still snap back into shape," Hawkins said. "We've created glass membranes that can move up and down and bend. They are the first building blocks of a whole new plumbing system that could move very small volumes of liquid around." While current lab-on-a-chip membrane devices effectively function on the microscale, Hawkins' research, recently published... more read more

Nanophotonics team creates low-voltage, multicolor, electrochromic glass

Rice University's latest nanophotonics research could expand the color palette for companies in the fast-growing market for glass windows that change color at the flick of an electric switch. In a new paper in the American Chemical Society journal ACS Nano, researchers from the laboratory of Rice plasmonics pioneer Naomi Halas report using a readily available, inexpensive hydrocarbon molecule called perylene to create glass that can turn two different colors at low voltages. "When we put charges on the molecules or remove charges from them, they go from clear to a vivid color," said Halas, director of the Laboratory for Nanophotonics (LANP), lead scientist on the new study... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED