MMaterialsgateNEWS 2015/04/14

Related MaterialsgateCARDS

Energy: Research team develops a hyper-stretchable elastic-composite energy harvester

A research team led by Professor Keon Jae Lee of the Department of Materials Science and Engineering at the Korea Advanced Institute of Science and Technology (KAIST) has developed a hyper-stretchable elastic-composite energy harvesting device called a nanogenerator.

Flexible electronics have come into the market and are enabling new technologies like flexible displays in mobile phone, wearable electronics, and the Internet of Things (IoTs). However, is the degree of flexibility enough for most applications? For many flexible devices, elasticity is a very important issue. For example, wearable/biomedical devices and electronic skins (e-skins) should stretch to conform to arbitrarily curved surfaces and moving body parts such as joints, diaphragms, and tendons. They must be able to withstand the repeated and prolonged mechanical stresses of stretching. In particular, the development of elastic energy devices is regarded as critical to establish power supplies in stretchable applications. Although several researchers have explored diverse stretchable electronics, due to the absence of the appropriate device structures and correspondingly electrodes, researchers have not developed ultra-stretchable and fully-reversible energy conversion devices properly.

Recently, researchers from KAIST and Seoul National University (SNU) have collaborated and demonstrated a facile methodology to obtain a high-performance and hyper-stretchable elastic-composite generator (SEG) using very long silver nanowire-based stretchable electrodes. Their stretchable piezoelectric generator can harvest mechanical energy to produce high power output (~4 V) with large elasticity (~250%) and excellent durability (over 104 cycles). These noteworthy results were achieved by the non-destructive stress- relaxation ability of the unique electrodes as well as the good piezoelectricity of the device components. The new SEG can be applied to a wide-variety of wearable energy-harvesters to transduce biomechanical-stretching energy from the body (or machines) to electrical energy.

Professor Lee said, "This exciting approach introduces an ultra-stretchable piezoelectric generator. It can open avenues for power supplies in universal wearable and biomedical applications as well as self-powered ultra-stretchable electronics."

Source: The Korea Advanced Institute of Science and Technology (KAIST) – 13.04.2015.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

New research helps pave the way toward highly energy-efficient zinc oxide-based micro energy harvesting devices with applications in portable communications, healthcare and environmental monitoring, and more.

Today, we're surrounded by a variety of electronic devices that are moving increasingly closer to us - we can attach and wear them, or even implant electronics inside our bodies. Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable and powered by ambient renewable energy. This last goal inspired a group of Korea Advanced Institute of Science and Technology (KAIST) researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be more effectively used to tap into abundant mechanical energy sources to power micro devices. They discovered that inserting aluminum... more read more

The energy efficiency of KAIST's piezoelectric nanogenerator has increased by almost 40 times, one step closer toward the commercialization of flexible energy harvesters that can supply power infinitely to wearable, implantable electronic devices

NANOGENERATORS are innovative self-powered energy harvesters that convert kinetic energy created from vibrational and mechanical sources into electrical power, removing the need of external circuits or batteries for electronic devices. This innovation is vital in realizing sustainable energy generation in isolated, inaccessible, or indoor environments and even in the human body. Nanogenerators, a flexible and lightweight energy harvester on a plastic substrate, can scavenge energy from the extremely tiny movements of natural resources and human body such as wind, water flow, heartbeats, and diaphragm and respiration activities to generate electrical signals. The generators are not only self... more read more

A research team led by Professor Keon Jae Lee and Professor Yoon Sung Nam from the Department of Materials Science and Engineering at KAIST has developed the biotemplated design of flexible piezoelectric energy harvesting device, called "nanogenerator."

Nature has its own capabilities to spontaneously synthesize and self-assemble universal materials with sophisticated architectures such as shells, sea sponges, and bone minerals. For instance, the natural sea shell, consisting of calcium carbonate (CaCO3), is very rigid and tough whereas the artificial chalk made by the same material is fragile. In addition, most of artificial syntheses are performed under toxic, expensive and extreme environments in contrast to the natural syntheses, which are processed in benign and mild surroundings. If human can mimic these biological abilities, a variety of ecological and material issues can be solved. The KAIST team modified a M13 viral gene, which... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED