MMaterialsgateNEWS 2018/05/17

Making carbon nanotubes as usable as common plastics

Credit: Northwestern University

Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations

Northwestern University’s Jiaxing Huang is ready to reignite carbon nanotube research. And he’s doing so with a common chemical that was once used in household cleaners.

By using an inexpensive, already mass produced, simple solvent called cresol, Huang has discovered a way to make disperse carbon nanotubes at unprecedentedly high concentrations without the need for additives or harsh chemical reactions to modify the nanotubes. In a surprising twist, Huang also found that as the nanotubes’ concentrations increase, the material transitions from a dilute dispersion to a thick paste, then a free-standing gel and finally a kneadable dough that can be shaped and molded.

The study was published online on May 14 in the Proceedings of the National Academy of Sciences.

“Because of their exceptional mechanical, thermal and electrical properties, carbon nanotubes have attracted a lot of attention for a number of applications,” said Huang, professor of materials science and engineering in Northwestern’s McCormick School of Engineering. “But after decades of research and development, some of the excitement has faded.”

The reason? Carbon nanotubes are notoriously tricky to process — especially in large quantities. About 10,000 times thinner than a human hair, the wiry, tube-shaped structures are said to be stronger than steel and conduct heat and electricity far better than copper. But when mass produced — usually in the form of powders — the tubes twist and clump together. This complication is a major barrier to the material’s widespread applications.

“Aggregated tubes are hard to disperse in solvents,” Huang said. “And if you cannot get a good dispersion, then you won’t be able to make high-quality nanotube thin films that many applications rely on.”

In order to bypass this problem, previous researchers used additives to coat the nanotubes, which chemically altered their surfaces and forced them to separate. Although these methods do work, they leave behind residues or alter the nanotubes’ surface structures, which can blunt their desirable properties.

By contrast, Huang’s team found that cresol does not deteriorate carbon nanotubes’ surface functions. And, after separating the entangled tubes, researchers can simply remove the chemical by washing it off or heating it until it evaporates.

Finding unexpected kneads

After unlocking a new way to make carbon nanotubes in higher and higher concentrations, Huang and his team discovered new forms of the material. As the concentration of carbon nanotubes increases, the material transitions from a dilute dispersion to a spreadable paste to a free-standing gel and finally to a kneadable dough. These various forms can be molded, reshaped or used as conductive ink for 3D printing.

“The dough state of nanotubes is fascinating,” said Kevin Chiou, a graduate student in Huang’s laboratory and first author of the paper. “It can be readily shaped and molded into arbitrary structures just like playdough.”

“Essentially, this solvent system now makes nanotubes behave just like polymers,” Huang said. “It is really exciting to see cresol-based solvents make once hard-to-process carbon nanotubes as usable as common plastics.”

Source: Northwestern University – 15.05.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Jeff Fitlow

Rice lab makes short nanotube samples by hand to dramatically cut production time

The terms “handmade” and “high tech” are not commonly found in the same sentence, but they both apply to a Rice University method to quickly produce fibers from carbon nanotubes. The method developed by the Rice lab of chemist Matteo Pasquali allows researchers to make short lengths of strong, conductive fibers from small samples of bulk nanotubes in about an hour. The work complements Pasquali’s pioneering 2013 method to spin full spools of thread-like nanotube fibers for aerospace, automotive, medical and smart-clothing applications. The fibers look like cotton thread but perform like metal wires and carbon fibers. It can take grams of material and weeks of effort to optimize... more read more

Credit: Courtesy of the Pasquali Lab

Rice researchers advance characterization, purification of nanotube wires and films

To make continuous, strong and conductive carbon nanotube fibers, it’s best to start with long nanotubes, according to scientists at Rice University. The Rice lab of chemist and chemical engineer Matteo Pasquali, which demonstrated its pioneering method to spin carbon nanotube into fibers in 2013, has advanced the art of making nanotube-based materials with two new papers in the American Chemical Society’s ACS Applied Materials and Interfaces. The first paper characterized 19 batches of nanotubes produced by as many manufacturers to determine which nanotube characteristics yield the most conductive and strongest fibers for use in large-scale aerospace, consumer electronics and textile... more read more

Earth is 70 percent water, but only a tiny portion—0.007 percent—is available to drink.

As potable water sources dwindle, global population increases every year. One potential solution to quenching the planet’s thirst is through desalinization—the process of removing salt from seawater. While tantalizing, this approach has always been too expensive and energy intensive for large-scale feasibility. Now, researchers from Northeastern have made a discovery that could change that, making desalinization easier, faster and cheaper than ever before. In a paper published Thursday in Science, the group describes how carbon nanotubes of a certain size act as the perfect filter for salt—the smallest and most abundant water contaminant. Filtering water is tricky because water molecules... more read more

More on this topic:

A new class of carbon nanotubes could be the next-generation clean-up crew for toxic sludge and contaminated water, say researchers at Rochester Institute of Technology.

Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials--silicon gels and activated carbon--according to a paper published in the March issue of Environmental Science Water: Research and Technology. RIT researchers John-David Rocha and Reginald Rogers, authors of the study, demonstrate the potential of this emerging technology to clean polluted water. Their work applies carbon nanotubes to environmental problems in a specific new way that builds on a nearly two decades of nanomaterial research. Nanotubes are more commonly associated with fuel-cell research. "This aspect is new... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products