MMaterialsgateNEWS 2017/05/03

Related MaterialsgateCARDS

Zapping bacteria with sanitizers made of paper

Credit: Jingjin Xie

Imagine wearing clothes with layers of paper that protect you from dangerous bacteria.

A Rutgers-led team has invented an inexpensive, effective way to kill bacteria and sanitize surfaces with devices made of paper.

"Paper is an ancient material, but it has unique attributes for new, high-tech applications," said Aaron Mazzeo, an assistant professor in Rutgers' Department of Mechanical and Aerospace Engineering. "We found that by applying high voltage to stacked sheets of metallized paper, we were able to generate plasma, which is a combination of heat, ultraviolet radiation and ozone that kill microbes."

The researchers detail their invention in a study published online today in the Proceedings of the National Academy of Sciences. A video detailing the work is also available on YouTube.

In the future, paper-based sanitizers may be suitable for clothing that sterilizes itself, devices that sanitize laboratory equipment and smart bandages to heal wounds, among other uses, the study says. The motivation for this study was to create personal protective equipment that might contain the spread of infectious diseases, such as the devastating 2014 outbreak of Ebola in West Africa.

The researchers' invention consists of paper with thin layers of aluminum and hexagon/honeycomb patterns that serve as electrodes to produce the plasma, or ionized gas. The fibrous and porous nature of the paper allows gas to permeate it, fueling the plasma and facilitating cooling.

"To our knowledge, we're the first to use paper as a base to generate plasma," said Jingjin Xie, the study's lead author and a doctoral candidate in the Department of Mechanical and Aerospace Engineering.

In experiments, the paper-based sanitizers killed more than 99 percent of Saccharomyces cerevisiae (a yeast species) and more than 99.9 percent of E. coli bacteria cells. Most E. coli bacteria are harmless and are an important part of a healthy human intestinal tract. However, some types of E. coli can cause diarrhea, urinary tract infections, pneumonia and other illnesses, according to the U.S. Centers for Disease Control and Prevention.

"Preliminary results showed that our sanitizers can kill spores from bacteria, which are hard to kill using conventional sterilization methods," said Qiang (Richard) Chen, study coauthor and a doctoral candidate in the Department of Plant Biology in Rutgers' School of Environmental and Biological Sciences.

"Our next phase is to vigorously test how effective our sanitizer system is in killing spores," said James F. White Jr., study coauthor and professor of plant pathology in the Department of Plant Biology.

Mazzeo said one of the goals of their ongoing research is to make sensors that resemble how human and animal skin provides protection from external microbes and bacteria, while detecting input (touch, force, temperature and moisture) from environmental surroundings. Such sensors might cover parts of prosthetics, buildings or vehicles. It also might be possible to sterilize vehicles, robots or devices before they enter contamination-prone environments and when they come out to keep them from contaminating people and clean environments.

Professor Mazzeo is a recent recipient of a 2017 NSF CAREER Award, which will allow his research group to continue work with papertronic sensors. The scientists will explore the design and fabrication of paper-based sensors for wearable devices capable of measuring brain waves and sweat to determine human alertness and stress. Their future work should lead to electronic devices that bridge the gap between machines and humans, while creating new processing techniques for renewable paper products.

Source: Rutgers University – 01.05.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Research team from University of Houston find that the light-activated gold nanoparticles destroy potentially deadly bacterial cells in seconds

Researchers have developed a new technique for killing bacteria in seconds using highly porous gold nanodisks and light, according to a study published today in Optical Materials Express, a journal published by The Optical Society. The method could one day help hospitals treat some common infections without using antibiotics, which could help reduce the risk of spreading antibiotics resistance. "We showed that all of the bacteria were killed pretty quickly . . . within 5 to 25 seconds. That's a very fast process," said corresponding author Wei-Chuan Shih, a professor in the electrical and computer engineering department, University of Houston, Texas. Scientists create gold... more read more

Someday, cicadas and dragonflies might save your sight. The key to this power lies in their wings, which are coated with a forest of tiny pointed pillars that impale and kill bacterial cells unlucky enough to land on them.

Now, scientists report they have replicated these antibacterial nanopillars on synthetic polymers that are being developed to restore vision. The researchers present their work today at the 251st National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 12,500 presentations on a wide range of science topics. "Other research groups have also created antibacterial nanopillar surfaces, but none of their approaches can be used on ordinary polymer surfaces or be scaled up easily," according to Albert F. Yee, Ph.D., who leads a team working on the topic... more read more

Natural chitosan-based film enhanced with anti-bacterial and antiviral properties of grapefruit seed extract improves food safety and quality

Researchers from the National University of Singapore (NUS) have successfully developed an environmentally-friendly food packaging material that is free from chemical additives, by fortifying natural chitosan-based composite film with grapefruit seed extract (GFSE). This novel food packaging material can slow down fungal growth, doubling the shelf-life of perishable food, such as bread. Chitosan, a natural and biodegradable polymer derived from the shells of shrimp and other crustaceans, has immense potential for applications in food technology, owing to its biocompatibility, non-toxicity, short time biodegradability and excellent film forming ability. Chitosan also has inherent antimicrobial... more read more

The implantation of medical devices is not without risks. Bacterial or fungal infections can occur and the body's strong immune response may lead to the rejection of the implant.

Researchers at Unit 1121 "Biomaterials and Bio-engineering" (Inserm/Strasbourg university) have succeeded in creating a biofilm with antimicrobial, antifungal and anti-inflammatory properties. It may be used to cover titanium implants (orthopaedic prostheses, pacemakers...) prevent or control post-operative infections. Other frequently used medical devices that cause numerous infectious problems, such as catheters, may also benefit. These results are published in the journal Advanced Healthcare Materials. Implantable medical devices (prosthesis/pacemakers) are an ideal interface for micro-organisms, which can easily colonize their surface. As such, bacterial infection may occur... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED