MMaterialsgateNEWS 2017/04/18

Related MaterialsgateCARDS

Energy: Art of paper-cutting inspires self-charging paper device

Credit: American Chemical Society

Despite the many advances in portable electronic devices, one thing remains constant: the need to plug them into a wall socket to recharge.

Now researchers, reporting in the journal ACS Nano, have developed a light-weight, paper-based device inspired by the Chinese and Japanese arts of paper-cutting that can harvest and store energy from body movements.

Portable electronic devices, such as watches, hearing aids and heart monitors, often require only a little energy. They usually get that power from conventional rechargeable batteries. But Zhong Lin Wang, Chenguo Hu and colleagues wanted to see if they could untether our small energy needs from the wall socket by harvesting energy from a user's body movements. Wang and others have been working on this approach in recent years, creating triboelectric nanogenerators (TENGs) that can harness the mechanical energy all around us, such as that created by our footsteps, and then use it to power portable electronics. But most TENG devices take several hours to charge small electronics, such as a sensor, and they're made of acrylic, which is heavy.

So the researchers turned to an ultra-light, rhombic paper-cut design a few inches long and covered it with different materials to turn it into a power unit. The four outer sides, made of gold- and graphite-coated sand paper, comprised the device's energy-storing supercapacitor element. The inner surfaces, made of paper and coated in gold and a fluorinated ethylene propylene film, comprised the TENG energy harvester. Pressing and releasing it over just a few minutes charged the device to 1 volt, which was enough to power a remote control, temperature sensor or a watch.

Source: American Chemical Society – 12.04.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Ian Stewart and Benjamin Wiley

Highly conductive films make functional circuits without adding high heat

By suspending tiny metal nanoparticles in liquids, Duke University scientists are brewing up conductive ink-jet printer "inks" to print inexpensive, customizable circuit patterns on just about any surface. Printed electronics, which are already being used on a wide scale in devices such as the anti-theft radio frequency identification (RFID) tags you might find on the back of new DVDs, currently have one major drawback: for the circuits to work, they first have to be heated to melt all the nanoparticles together into a single conductive wire, making it impossible to print circuits on inexpensive plastics or paper. A new study by Duke researchers shows that tweaking the shape... more read more

Credit: Mats Tiborn

Less than a micrometre thin, bendable and giving all the colours that a regular LED display does, it still needs ten times less energy than a Kindle tablet.

Researchers at Chalmers University of Technology have developed the basis for a new electronic "paper". Their results were recently published in the high impact journal Advanced Materials. When Chalmers researcher Andreas Dahlin and his PhD student Kunli Xiong were working on placing conductive polymers on nanostructures, they discovered that the combination would be perfectly suited to creating electronic displays as thin as paper. A year later the results were ready for publication. A material that is less than a micrometre thin, flexible and giving all the colours that a standard LED display does. "The 'paper' is similar to the Kindle tablet", says Andreas... more read more

A piece of paper is one of the most common, versatile daily items. Children use it to draw their favorite animals and practice writing the A-B-Cs, and adults print reports or scribble a hasty grocery list.

Now, connecting real-world items such as a paper airplane or a classroom survey form to the larger Internet of Things environment is possible using off-the-shelf technology and a pen, sticker or stencil pattern. Researchers from the University of Washington, Disney Research and Carnegie Mellon University have created ways to give a piece of paper sensing capabilities that allows it to respond to gesture commands and connect to the digital world. The method relies on small radio frequency (RFID) tags that are stuck on, printed or drawn onto the paper to create interactive, lightweight interfaces that can do anything from controlling music using a paper baton, to live polling in a classroom... more read more

A paperlike battery electrode developed by a Kansas State University engineer may improve tools for space exploration or unmanned aerial vehicles.

Gurpreet Singh, associate professor of mechanical and nuclear engineering, and his research team created the battery electrode using silicon oxycarbide-glass and graphene. The battery electrode has all the right characteristics. It is more than 10 percent lighter than other battery electrodes. It has close to 100 percent cycling efficiency for more than 1000 charge discharge cycles. It is made of low-cost materials that are byproducts of the silicone industry. And it functions at temperatures as low as minus 15 degrees C, which gives it numerous aerial and space applications. The research appears in Nature Communications article "Silicon oxycarbide glass-graphene composite paper electrode... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED