MMaterialsgateNEWS 2016/03/16

Bionic: Insect wings inspire antibacterial surfaces for corneal transplants and other medical devices

Someday, cicadas and dragonflies might save your sight. The key to this power lies in their wings, which are coated with a forest of tiny pointed pillars that impale and kill bacterial cells unlucky enough to land on them.

Now, scientists report they have replicated these antibacterial nanopillars on synthetic polymers that are being developed to restore vision.

The researchers present their work today at the 251st National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 12,500 presentations on a wide range of science topics.

"Other research groups have also created antibacterial nanopillar surfaces, but none of their approaches can be used on ordinary polymer surfaces or be scaled up easily," according to Albert F. Yee, Ph.D., who leads a team working on the topic. By contrast, the production method his group is adapting overcomes these hurdles.

"Our method is based on one developed in the early 2000s for the semiconductor industry," says Mary Nora Dickson, a graduate student in Yee's lab. "It is robust, inexpensive and can be used in industrial production. So it can now be applied to medical devices that could improve people's quality of life."

One such application is an artificial cornea that Yee's group aims to construct from poly(methyl methacrylate) (PMMA), familiar to many by trade names such as Plexiglas® and Lucite®. The material is already commonly used in medical devices including implantable intraocular lenses and traditional hard contact lenses. By building nanopillars into the surfaces of these types of devices, the researchers hope to make them bactericidal without the need for a separate biocidal coating or antibiotic drugs.

In earlier work, Yee, Dickson, Elena Liang, and colleagues at the University of California, Irvine, showed that their nanopillars, like those on cicada wings, can kill bacteria referred to as "gram-negative." This group of microorganisms includes E. coli. But cicada nanopillars are unable to kill another type of bacteria known as "gram-positive" because these microbes have thicker cell walls. Wiping out these bacteria, which include MRSA (methicillin-resistant Staphylococcus aureus) and Streptococcus (known as "strep"), is important because they cause infections on medical devices and in hospitals.

Compared to cicada nanopillars, the ones on dragonfly wings are taller and skinnier, and they can kill gram-positive bacteria. Now Dickson is trying to form these types of nanopillars on PMMA. However, she is finding that these structures are harder to replicate than the cicadas' stubby pillars. She is currently modifying the production process in several different ways to overcome these challenges.

For example, one version of the process uses commercial molds that contain billions of tiny pits in an area that covers just a few square inches. Pressing the mold onto a heated polymer film reshapes the film, leaving it decorated with nanopillars once the mold is removed. That method works just fine for the stubbier cicada-like pillars, but the finer dragonfly-like pillars tend to break apart when the mold is removed, much like over-cooked cupcakes sticking to the inside of an ungreased muffin tin.

So Dickson is experimenting with fluorinated silane coatings for the mold; these coatings could help free the pillars when it's time to remove the polymer film. She's also testing different chemical compositions for the mold itself.

Yee, Liang and Dickson are now applying their technique to curved surfaces such as an artificial cornea. For this application, Dickson created a flexible mold for the cicada-like pillars. She recently showed that the nanopillared PMMA surface produced with this curved mold retains the ability to kill bacteria without harming other kinds of cells in the eye. The team is currently developing a mold for the taller, dragonfly-type pillars.

The group has filed for patents on the bactericidal surface and artificial cornea application and hopes to begin animal trials this year.

Source: American Chemical Society – 15.03.2016.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Inspired by a desert beetle, cactus and pitcher plant, researchers design a new material to collect water droplets

Organisms such as cacti and desert beetles can survive in arid environments because they've evolved mechanisms to collect water from thin air. The Namib desert beetle, for example, collects water droplets on the bumps of its shell while V-shaped cactus spines guide droplets to the plant's body. As the planet grows drier, researchers are looking to nature for more effective ways to pull water from air. Now, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard University have drawn inspiration from these organisms to develop a better way to promote and transport... more read more

Researchers from the University of Southampton have designed innovative membrane wings inspired by bats, paving the way for a new breed of unmanned Micro Air Vehicles (MAVs) that have improved aerodynamic properties, can fly over long distances and are more economical to run.

The wings work like artificial muscles, changing shape in response to the forces they experience and have no mechanical parts, making MAVs incorporating them easier to maintain. The unique design of the wings incorporates electro-active polymers that makes the wings stiffen and relax in response to an applied voltage and further enhances their performance. By changing the voltage input, the shape of the electroactive membrane and therefore aerodynamic characteristics can be altered during flight. The proof of concept wing will eventually enable flight over much longer distances than currently possible. The wings have been developed and successfully tested in-flight through a unique combination... more read more

Purdue University researchers have shown that a synthetic version of a high-strength adhesive produced by mussels is non-toxic to living cells, suggesting its potential suitability for surgical and other biomedical applications.

“One long-term goal is to potentially replace sutures and screws owing to the trauma caused from punching holes into healthy tissue. These classic methods to join tissue also concentrate mechanical stresses on the tissues as well as creating sites for infection,” said Jonathan Wilker, a professor of chemistry and materials engineering who helped lead a research team that developed the polymer. “A possibly improved approach would be to use adhesives for connecting tissues.” In new findings, researchers have shown the polymer, poly[(3,4-dihydroxystyrene)-co-styrene], is non-toxic to cells, said Julie Liu, an associate professor of chemical engineering and biomedical engineering who... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED