MMaterialsgateNEWS 2018/06/08

Research on spider glue resolves sticky problem

Ever wonder why paint peels off the wall during summer’s high humidity? It’s the same reason that bandages separate from skin when we bathe or swim.

Interfacial water, as it’s known, forms a slippery and nonadhesive layer between the glue and the surface to which it is meant to stick, interfering with the formation of adhesive bonds between the two.

Overcoming the effects of interfacial water is one of the challenges facing developers of commercial adhesives.

To find a solution, researchers here at The University of Akron are looking to one of the strongest materials found in nature — spider silk.

‘Nature’s best glue’

The sticky glue that coats the silk threads of spider webs is a hydrogel, meaning it is full of water. One would think, then, that spiders would have difficulty catching prey, especially in humid conditions – but they do not. In fact, their sticky glue, which has been a subject of intensive research for years, is one of the most effective biological glues in all of nature.

So how is spider glue able to stick in highly humid conditions?

That question was the subject of investigation by UA graduate students Saranshu Singla, Gaurav Amarpuri and Nishad Dhopatkar, who have been working with Dr. Ali Dhinojwala, interim dean of the College of Polymer Science and Polymer Engineering, and Dr. Todd Blackledge, a professor of biology in the Integrated Bioscience program. Both professors are principal investigators in UA’s Biomimicry Research Innovation Center (BRIC), which specializes in emulating biological forms, processes, patterns and systems to solve technical challenges.

The team’s findings, which may provide the clue to developing stronger commercial adhesives, can be read in a paper recently published in the journal Nature Communications.

Overcoming humidity

Singla and her colleagues set out to examine the secret behind the success of the common orb spider (Larinioides cornutus). How does it overcome the primary obstacle of achieving good adhesion in the humid conditions where water could be present between the glue and the target surface?

To investigate the processes involved, the team took orb spider glue, set it on sapphire substrate, then examined it using a combination of interface-sensitive spectroscopy and infrared spectroscopy.

Spider glue is made of three elements — two specialized glycoproteins, a collection of low molecular mass organic and inorganic compounds (LMMCs), and water. The LMMCs are hygroscopic (water-attracting), which keeps the glue soft and tacky to stick.

Singla and her team discovered that these glycoproteins act as primary binding agents to the surface. Glycoprotein-based glues have been identified in several other biological glues, such as fungi, algae, diatoms, sea stars, sticklebacks and English ivy.

But why doesn’t the water present in the spider glue interfere with the adhesive contact the way it does with most synthetic adhesives?

Promising results

The LMMCs, the team concluded, perform a previously unknown function of sequestering interfacial water, preventing adhesive failure.

Singla and colleagues determined that it is the interaction of glycoproteins and LMMCs that governs the adhesive quality of the glue produced, with the respective proportions varying across species, thus optimizing adhesive strength to match the relative humidity of spider habitat.

“The hygroscopic compounds – known as water-absorbers – in spider glue play a previously unknown role in moving water away from the boundary, thereby preventing failure of spider glue at high humidity,” explained Singla.

The ability of the spider glue to overcome the problem of interfacial water by effectively absorbing it is the key finding of the research, and the one with perhaps the strongest prospect for commercial development.

“Imagine a paint that is guaranteed for life, come rain or shine,” Singla remarked.

All thanks to your friendly neighborhood spider glue.

Source: University of Akron – 04.06.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: JPL

A team of California researchers has developed a robotic gripper that combines the adhesive properties of gecko toes and the adaptability of air-powered soft robots to grasp a much wider variety of objects than the state of the art.

Researchers will present their findings at the 2018 International Conference on Robotics and Automation May 21 to 25 in Brisbane, Australia. The gripper that the team developed can lift up to 45 lbs. and could be used to grasp objects in a wide range of settings, from factory floors to the International Space Station. Geckos are known as nature’s best climbers because of a sophisticated gripping mechanism on their toes. In previous work, researchers at Stanford University and the Jet Propulsion Laboratory led by Professor Aaron Parness recreated that mechanism with a synthetic material called a gecko-inspired adhesive. This material was used primarily on flat surfaces like walls. In... more read more

Professor Hoon-Eui Jeong's team has presented wet-responsive, shape-reconfigurable, and flexible hydrogel adhesives.

A Korean research team, affiliated with UNIST has presented a new type of underwater adhesives that are tougher than the natural biological glues that mussels normally use to adhere to rocks, ships, and larger sea critters. This has attracted much attention as a technology that surpass the limits of conventional chemical-based adhesives that significantly lose adhesion capability when exposed to moisture or when reused. This breakthrough has been led by Professor Hoon-Eui Jeong in the School of Mechanical Aerospace and Nuclear Engineering and his research team at UNIST. The findings of this study has been selected as the front cover of the December 2017 issue of ACS Macro Letters. Besides... more read more

Cone-shaped nanotextures could prevent fog condensation on surfaces in humid environments, including for power generation and transportation applications

Some insect bodies have evolved the abilities to repel water and oil, adhere to different surfaces, and eliminate light reflections. Scientists have been studying the physical mechanisms underlying these remarkable properties found in nature and mimicking them to design materials for use in everyday life. Several years ago, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory developed a nanoscale surface-texturing method for imparting complete water repellency to materials--a property inspired by insect exoskeletons that have tiny hairs designed to repel water by trapping air. Their method leverages the ability of materials called block copolymers (chains... more read more

Researchers from Case Western Reserve University, Dayton Air Force Research Laboratory and China have developed a new dry adhesive that bonds in extreme temperatures--a quality that could make the product ideal for space exploration and beyond.

The gecko-inspired adhesive loses no traction in temperatures as cold as liquid nitrogen or as hot as molten silver, and actually gets stickier as heat increases, the researchers report. The research, which builds on earlier development of a single-sided dry adhesive tape based on vertically aligned carbon nanotubes, is published in the journal Nature Communications. As far as the researchers know, no other dry adhesive is capable of working at such temperature extremes. Liming Dai, professor of macromolecular science and engineering at Case Western Reserve and an author of the study teamed with Ming Xu, a senior research associate at Case School of Engineering and visiting scholar from... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED