MMaterialsgateNEWS 2017/04/06

Related MaterialsgateCARDS

Electronics: Touch-sensitive, elastic fibers offer new interface for electronics

Credit: North Carolina State University

Researchers from North Carolina State University have created elastic, touch-sensitive fibers that can interface with electronic devices.

"Touch is a common way to interact with electronics using keyboards and touch screens," says Michael Dickey, a professor of chemical and biomolecular engineering at NC State and corresponding author of a paper describing the work. "We have created soft and stretchable fibers that can detect touch, as well as strain and twisting. These microscopic fibers may be useful for integrating electronics in new places, including wearable devices."

The new fibers are made of tube-like polymer strands that contain a liquid metal alloy, eutectic gallium and indium (EGaIn). The strands are only a few hundred microns in diameter, which is slightly thicker than a human hair.

Each fiber consists of three strands. One is completely filled with EGaIn, one is two-thirds filled with EGaIn, and one is only one-third filled with EGaIn. The slim tubes are then twisted together into a tight spiral.

The touch-responsive fiber works because of capacitance, or the phenomenon in which electric charge is stored between two conductors separated by an insulator. For example, when your finger (which is a conductor) touches the screen of your smartphone (which is an insulator), it changes the capacitance between your finger and the electronic material beneath the screen. The smartphone's technology then interprets that change in capacitance as a command to open an app or to type on the keypad.

Similarly, when your finger touches the elastic fiber, it changes the capacitance between your finger and the EGaIn inside the insulating polymer strands. By moving your finger along the fiber, the capacitance will vary, depending on how many of the strands contain EGaIn at that point in the fiber.

This effectively gives you the ability to send different electronic signals depending on which part of the fiber you touch. A video demonstrating the sensor can be seen at

The researchers also developed a sensor using two polymer strands, both of which are completely filled with EGaIn.

Again, the strands are twisted into a tight spiral. Increasing the number of twists elongates the elastic strands and brings the EGaIn in the two tubes closer together. This changes the capacitance between the two strands.

"We can tell how many times the fiber has been twisted based on the change in capacitance," Dickey says. "That's valuable for use in torsion sensors, which measure how many times, and how quickly, something revolves. The advantage of our sensor is that it is built from elastic materials and can therefore be twisted 100 times more - two orders of magnitude - than existing torsion sensors."

Source: North Carolina State University – 04.04.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Matthew Catenacci

Nanowire ink enables flexible, programmable electronics on materials like paper, plastic or fabric.

USB flash drives are already common accessories in offices and college campuses. But thanks to the rise in printable electronics, digital storage devices like these may soon be everywhere -- including on our groceries, pill bottles and even clothing. Duke University researchers have brought us closer to a future of low-cost, flexible electronics by creating a new "spray-on" digital memory device using only an aerosol jet printer and nanoparticle inks. The device, which is analogous to a 4-bit flash drive, is the first fully-printed digital memory that would be suitable for practical use in simple electronics such as environmental sensors or RFID tags. And because it is jet-printed... more read more

Credit: Du and Maroudas

In a significant advance, particularly within the microelectronics realm, University of Massachusetts Amherst engineers have established electrical surface treatment of conducting thin films as a physical processing method to reduce surface roughness

Surface roughness reduction is a really big deal when it comes to fundamental surface physics and while fabricating electronic and optical devices. As transistor dimensions within integrated circuits continue to shrink, smooth metallic lines are required to interconnect these devices. If the surfaces of these tiny metal lines aren't smooth enough, it substantially reduces their ability to conduct electrical and thermal energy -- decreasing functionality. A group of engineers at the University of Massachusetts Amherst are now reporting an advance this week in Applied Physics Letters, from AIP Publishing, in the form of modeling results that establish electrical surface treatment of conducting... more read more

A new technique using liquid metals to create integrated circuits that are just atoms thick could lead to the next big advance for electronics.

The process opens the way for the production of large wafers around 1.5 nanometres in depth (a sheet of paper, by comparison, is 100,000nm thick). Other techniques have proven unreliable in terms of quality, difficult to scale up and function only at very high temperatures -- 550 degrees or more. Distinguished Professor Kourosh Kalantar-zadeh, from the School of Engineering at RMIT University in Melbourne, Australia, led the project, which also included colleagues from RMIT and researchers from CSIRO, Monash University, North Carolina State University and the University of California. He said the electronics industry had hit a barrier. "The fundamental technology of car engines... more read more

Credit: Michigan State University

Engineering researchers at Michigan State University have developed the first stretchable integrated circuit that is made entirely using an inkjet printer, raising the possibility of inexpensive mass production of smart fabric.

Imagine: an ultrathin smart tablet that can be stretched easily from mini-size to extra large. Or a rubber band-like wrist monitor that measures one's heartbeat. Or wallpaper that turns an entire wall into an electronic display. These are some of the potential applications of the stretchable smart fabric developed in the lab of Chuan Wang, assistant professor of electrical and computer engineering. And because the material can be produced on a standard printer, it has a major potential cost advantage over current technologies that are expensive to manufacture. "We can conceivably make the costs of producing flexible electronics comparable to the costs of printing newspapers... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products