MMaterialsgateNEWS 2015/02/11

Bringing texture to your flat touchscreen

What if the touchscreen of your smartphone or tablet could touch you back? What if touch was as integrated into our ubiquitous technology as sight and sound?

Northwestern University and Carnegie Mellon University researchers now report a fascinating discovery that provides insight into how the brain makes sense of data from fingers.

In a study of people drawing their fingers over a flat surface that has two "virtual bumps," the research team is the first to find that, under certain circumstances, the subjects feel only one bump when there really are two. Better yet, the researchers can explain why the brain comes to this conclusion.

Their new mathematical model and experimental results on "haptic illusions" could one day lead to flat-screen displays featuring active touch-back technology, such as making your touchscreen's keyboard actually feel like a keyboard. Tactile information also could benefit the blind, users of dashboard technology in cars, players of video games and more.

"Touch is so important in our real world, but it is neglected in the digital world," said J. Edward Colgate, an expert in touch-based (haptic) systems. He is the Allen and Johnnie Breed University Professor of Design at Northwestern's McCormick School of Engineering and Applied Science. "We want to create something that will make touch a reality for people interacting with their screens, and this work is a step in that direction."

Forces felt by the fingers as they travel along a flat surface can lead to the illusion that the surface actually contains bumps. This so-called "virtual bump illusion" is well known in the haptics field, Colgate said, and the researchers were able to make use of it.

"By leveraging the virtual bump illusion, we were able to design a meaningful experiment that shed light on the way the brain integrates information from multiple fingers," Colgate said. "Our big finding was 'collapse ' -- the idea that separate bumps felt in separate fingers are nonetheless experienced as one bump if their separation happens to match that of the fingers."

The study, which will be published the week of Feb. 9 by the Proceedings of the National Academy of Sciences (PNAS), is about how the brain makes sense of data from the fingers.

Colgate, the paper's corresponding author, and longtime Northwestern haptics collaborator Michael A. Peshkin joined forces with Carnegie Mellon's Roberta Klatzky to work on filling the digital world's functional gap by enabling flat screens to engage the haptic perceptual system. This is known as "surface haptic" technology.

The research team's experiment presented two virtual bumps, with the distance between them varying across trials, to subjects participating in the study. When bump and finger spacing were identical, subjects reported feeling two bumps as one. In this case, the brain thinks it is too coincidental that there should be two bumps at the same time, so it registers the bumps as one.

"How does your body and mind interpret something flat and 'see' it as having shape and texture?" said Klatzky, a world-renowned expert in cognitive psychology and haptic perception. "An important step toward effective surface haptics is to understand what kinds of stimulation might lead you to feel something other than uniform flatness when you touch the surface of your device. Our study contributes to this understanding."

Klatzky is the Charles J. Queenan Jr. Professor of Psychology and Human-Computer Interaction at Carnegie Mellon.

"Our findings will help us and other researchers figure out how to design haptic technology to produce certain tactile effects," said Peshkin, a professor of mechanical engineering at the McCormick School. "Haptics -- giving a feel to objects -- just enhances the physicality of a person's experience."

Steven G. Manuel, the study's first author and a Northwestern alumnus, developed the model of where the "illusion of protrusion" comes from. It describes how the brain constructs a mental depiction of the surface using sensory signals from two fingers as they explore a surface over time and space.

A critical feature of the model, and one found in theories of perception more generally, is that it assumes the brain is biased toward inferring causes rather than registering coincidences. In essence, as the fingers encounter forces while they explore a flat surface, the brain creates virtual bumpiness that is most consistent with the physical bumps that would produce the same sensations.

Source: Northwestern University – 09.02.2015.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Technology has changed rapidly over the last few years with touch feedback, known as haptics, being used in entertainment, rehabilitation and even surgical training. New research, using ultrasound, has developed an invisible 3D haptic shape that can be seen and felt.

The research paper, published in the current issue of ACM Transactions on Graphics and which will be presented at this week's SIGGRAPH Asia 2014 conference [3-6 December], demonstrates how a method has been created to produce 3D shapes that can be felt in mid-air. The research, led by Dr Ben Long and colleagues Professor Sriram Subramanian, Sue Ann Seah and Tom Carter from the University of Bristol's Department of Computer Science, could change the way 3D shapes are used. The new technology could enable surgeons to explore a CT scan by enabling them to feel a disease, such as a tumour, using haptic feedback. The method uses ultrasound, which is focussed onto hands above the device... more read more

Disney Research develops algorithm for rendering 3-D tactile features on touch surfaces

A person sliding a finger across a topographic map displayed on a touch screen can feel the bumps and curves of hills and valleys, despite the screen's smooth surface, with the aid of a novel algorithm created by Disney Research, Pittsburgh for tactile rendering of 3D features and textures. By altering the friction encountered as a person's fingertip glides across a surface, the Disney algorithm can create a perception of a 3D bump on a touch surface without having to physically move the surface. The method can be used to simulate the feel of a wide variety of objects and textures. The algorithm is based on a discovery that when a person slides a finger over a real physical bump... more read more

More on this topic:

Our sense of touch is clearly more acute than many realize. A new study demystifies the “unknown sense” with first-ever measurements of human tactile perception.

In a ground-breaking study, Swedish scientists have shown that people can detect nano-scale wrinkles while running their fingers upon a seemingly smooth surface. The findings could lead such advances as touch screens for the visually impaired and other products, says one of the researchers from KTH Royal Institute of Technology. The study marks the first time that scientists have quantified how people feel, in terms of a physical property. One of the authors, Mark Rutland, Professor of Surface Chemistry, says that the human finger can discriminate between surfaces patterned with ridges as small as 13 nanometres in amplitude and non-patterned surfaces. “This means that, if your finger... more read more

Mobile devices include an increasing number of input and output techniques that are currently not used for communication.

Recent research results by Dr Eve Hoggan from HIIT / University of Helsinki, Finland, however, indicate that a synchronous haptic communication system has value as a communication channel in real-world settings with users that express greetings, presence and emotions through presages. -Pressure and tactile techniques have been explored in tangible interfaces for remote communication on dedicated devices but until now, these techniques have not been implemented on mobile devices or been used during live phone calls, says Eve Hoggan. Using a lab based study and a small field study, Doctor Hoggan and her co-workers show that haptic interpersonal communication can be integrated into a standard... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED