MMaterialsgateNEWS 2015/07/06

Medical Engineering: A Stretchy Mesh Heater for Sore Muscles

New flexible, silver-impregnated elastic mesh material is perfect for thermotherapy

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle Research, Institute for Basic Science (IBS) in Seoul, along with an international team, have come up with an ingenious way of creating therapeutic heat in a light, flexible design.

Other teams have come up with similar devices before, although no one was able to create something that didn’t rely on exotic materials or a complex fabrication process, factors which both carry hefty price tags. Unlike their predecessors, the team at IBS stayed away from things like carbon nanotubes and gold and looked at a more utilitarian option for their build material: thin slivers of silver nanowires.

The silver nanowires are tiny, averaging ∼150 nm in diameter and ∼30 μm in length (a human hair ranges from 17 to 181 µm). The nanowires were mixed into a liquid elastic material which is both soft and stretchy when dry.

To ensure that the material remains tight on the target area while heating, the team devised a 2-D interlocking coil pattern for the mesh structure. To make the mesh, the liquid mixture was poured into a shaped mold. The silver-elastic mesh was sandwiched between a top and bottom layer of soft, thin insulation.

In material flexibility tests, while placed on knee and wrist joints, the mesh heated while deformed and under stress on knee and wrist joints. It is lightweight, breathable and generates heat over the entire surface area of the material. A hot water bottle used for treating muscle soreness feels good, but it will inevitably cool down while in use. Commercially available electric heating pads are sufficient for applying heat to an injured area but their cords need to be attached to an A/C outlet to work. This is where the new technology trumps the old. The mesh maintains a constant temperature instead of cooling down during use and is battery powered so it doesn’t need an outlet.

Beyond thermotherapy, the applications are endless. This technology could be used as a lightweight heating element in ski jackets, or as a hyper-efficient seat warmer in a car. Although only flat mesh connected into a tube has been made so far, it isn’t a stretch to imagine creating more intricate designs like the shape of a hand with detailed fingers.

Source: Institute for Basic Science - 03.07.2105.


Suji Choi, Jinkyung Park, Wonji Hyun, Jangwon Kim, Jaemin Kim, Young Bum Lee, Changyeong Song, Hye Jin Hwang, Ji Hoon Kim, Taeghwan Hyeon, and Dae-Hyeong Kim, (2015), “Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy”, American Chemical Society, DOI: 10.1021/acsnano.5b02790

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Engineers at Oregon State University have invented a way to fabricate silver, a highly conductive metal, for printed electronics that are produced at room temperature.

There may be broad applications in microelectronics, sensors, energy devices, low emissivity coatings and even transparent displays. A patent has been applied for on the technology, which is now available for further commercial development. The findings were reported in Journal of Materials Chemistry C. Silver has long been considered for the advantages it offers in electronic devices. Because of its conductive properties, it is efficient and also stays cool. But manufacturers have often needed high temperatures in the processes they use to make the devices, adding to their cost and complexity, and making them unsuitable for use on some substrates, such as plastics that might melt or papers... more read more

With its high electrical conductivity and optical transparency, indium tin oxide is one of the most widely used materials for touchscreens, plasma displays, and flexible electronics. But its rapidly escalating price has forced the electronics industry to search for other alternatives.

One potential and more cost-effective alternative is a film made with silver nanowires--wires so extremely thin that they are one-dimensional--embedded in flexible polymers. Like indium tin oxide, this material is transparent and conductive. But development has stalled because scientists lack a fundamental understanding of its mechanical properties. Now Horacio Espinosa, the James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at Northwestern University's McCormick School of Engineering, has led research that expands the understanding of silver nanowires' behavior in electronics. Espinosa and his team investigated the material's cyclic loading, which... more read more

North Carolina State University researchers have used silver nanowires to develop wearable, multifunctional sensors that could be used in biomedical, military or athletic applications, including new prosthetics, robotic systems and flexible touch panels. The sensors can measure strain, pressure, human touch and bioelectronic signals such as electrocardiograms.

“The technology is based on either physical deformation or “fringing” electric field changes. The latter is very similar to the mechanism used in smartphone touch screens, but the sensors we’ve developed are stretchable and can be mounted on a variety of curvilinear surfaces such as human skin,” says Shanshan Yao, a Ph.D. student at NC State and lead author of a paper on the work. “These sensors could be used to help develop prosthetics that respond to a user’s movement and provide feedback when in use,” says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and senior author of the paper. “They could also be used to create robotics... more read more

A new technique for depositing silver onto clothing fibres could open up huge opportunities in wearable electronics.

Scientists at the National Physical Laboratory (NPL), the UK's National Measurement Institute, have developed a way to print silver directly onto fibres. This new technique could make integrating electronics into all types of clothing simple and practical. This has many potential applications in sports, health, medicine, consumer electronics and fashion. Most current plans for wearable electronics require weaving conductive materials into fabrics, which offer limited flexibility and can only be achieved when integrated into the design of the clothing from the start. NPL's technique could allow lightweight circuits to be printed directly onto complete garments. Silver coated fibres... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products