MMaterialsgateNEWS 2017/12/11

Composites: Nature’s toughest substances decoded

Credit: Multiscale Materials Laboratory/Rice University

Rice University engineers develop computer maps to help design shell-like platelet-matrix composites

How a material breaks may be the most important property to consider when designing layered composites that mimic those found in nature. A method by Rice University engineers decodes the interactions between materials and the structures they form and can help maximize their strength, toughness, stiffness and fracture strain.

In a study that required more than 400 computer simulations of platelet-matrix composite materials like mother-of-pearl, Rice materials scientist Rouzbeh Shahsavari and visiting scholar Shafee Farzanian developed a design map to help with the synthesis of staggered composites for applications at any scale, from microelectronics to cars to spacecraft, where lightweight, multifunctional structural composites are key.

The model integrates the geometries and properties of various platelet and matrix components to compute the composite’s strength, toughness, stiffness and fracture strain. Changing any architectural or compositional parameter adjusts the entire model as the user seeks the optimal psi, a quantification of its ability to avoid catastrophic failure.

The research appears in the Journal of Mechanics and Physics of Solids.

Natural composites are common. Examples include nacre (mother-of-pearl), tooth enamel, bamboo and the dactyl clubs of mantis shrimp, all of which are nanoscale arrangements of hard platelets connected by soft matrix materials and arranged in overlapping brick-and-mortar, bouligand or other architectures.

They work because the hard parts are strong enough to take a beating and flexible enough (due to the soft matrix) to distribute stress throughout the material. When they fracture, they’re often able to distribute or limit the damage without failing entirely.

“Lightweight natural materials are abundant,” Shahsavari said. “In these types of materials, two kinds of toughening happen. One comes before crack propagation, when the platelets slide against each other to relieve stress. The other is part of the beauty of these materials: the way they toughen after crack propagation.

“Even when there is a crack, it does not mean a failure,” he said. “The crack may be arrested or deflected several times between the layers. Instead of going straight through the material to the surface, which is a catastrophic failure, the crack bumps into another layer and zigzags or forms another complex pattern that delays or entirely prevents the failure. This is because a long and complex crack trajectory requires much more energy to drive it, compared with a straight crack.”

Scientists and engineers have worked for years to replicate the light, tough, strong and stiff properties of natural materials, either with hard and soft components or combinations of different platelet types.

To engineers, stiffness, toughness and strength are distinct characteristics. Strength is the ability of a material to stay together when stretched or compressed. Stiffness is how well a material resists deformation. Toughness is the ability of a material to absorb energy before failure. In a previous paper, the Rice lab created maps to predict the properties of composites based on those parameters before crack propagation.

The addition of crack-induced toughening in natural and biomimetic materials, Shahsavari said, is another potent and interesting source of toughening that provides extra lines of defense against failure. “The models uncovered nonintuitive synergies between the before- and after-crack toughening phenomena,” he said. “They showed us what architectures and components would allow us to combine the best properties of each.”

The baseline model allowed the researchers to adjust four values for each simulation: characteristic platelet length, plasticity of the matrix, the platelet dissimilarity ratio (when more than one type of platelet is involved) and the platelet overlap offset, all of which are important to the composite’s properties.

Over the course of 400 simulations, the model revealed the greatest factor in psi may be platelet length, Shahsavari said. It showed that short platelets largely yield fracture control to the plasticity of the soft matrix, while long platelets take it back. Platelet lengths that distribute the fracture evenly and allow maximum crack growth can achieve the optimal psi and make material better able to avoid catastrophic failure.

The model will also help researchers design whether a material will fail with a sudden fracture, like ceramics, or slowly, like ductile metals, by switching components, using contrasting platelets or changing the architecture.

Source: Rice University – 04.12.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: The Hong Kong Polytechnic University

The Hong Kong Polytechnic University (PolyU) research team developed a novel breed of nanocomposites-inspired sensors which can be sprayed directly on flat or curved engineering structural surfaces, such as train tracks and aeroplane structures.

The sprayed sensors can be networked, to render rich real-time information on the health status of the structure under monitoring. Due to its light weight and low fabrication cost, large quantities of sensors can be deployed in a sensor network for detecting hidden flaws of structures, paving the way for a newera of ultrasonics-based structural health monitoring. The nanocomposite sensors developed by the research team from PolyU's Department of Mechanical Engineering, led by Professor Su Zhongqing and Professor Zhou Limin, adopt an innovative technique of fabrication through spraying which makes installation process for sensors much faster and more efficient compared with conventional... more read more

A WSU research team for the first time has developed a promising way to recycle the popular carbon fiber plastics that are used in everything from modern airplanes and sporting goods to the wind energy industry.

The work, reported in Polymer Degradation and Stability, provides an efficient way to re-use the expensive carbon fiber and other materials that make up the composites. Planes, windmills, many products Carbon fiber reinforced plastics are increasingly popular in many industries, particularly aviation, because they are light and strong. They are, however, very difficult to break down or recycle, and disposing of them has become of increasing concern. While thermoplastics, the type of plastic used in milk bottles, can be melted and easily re-used, most composites used in planes are thermosets. These types of plastics are cured and can't easily be undone and returned to their original... more read more

Scientists have succeeded in creating 'fiber-reinforced soft composites,' or tough hydrogels combined with woven fiber fabric. These fabrics are highly flexible, tougher than metals, and have a wide range of potential applicattions.

Efforts are currently underway around the world to create materials that are friendly to both society and the environment. Among them are those that comprise different materials, which exhibit the merits of each component. Hokkaido University researchers, led by Professor Jian Ping Gong, have focused on creating a reinforced material using hydrogels. Though such a substance has potential as a structural biomaterial, up until now no material reliable and strong enough for long-term use has been produced. This study was conducted as a part of the Cabinet Office's Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT). To address the problem, the team combined hydrogels... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products