MMaterialsgateNEWS 2016/11/09

Related MaterialsgateCARDS

Engineers develop new magnetic ink to print self-healing devices that heal in record time

A team of engineers at the University of California San Diego has developed a magnetic ink that can be used to make self-healing batteries, electrochemical sensors and wearable, textile-based electrical circuits.

The key ingredient for the ink is microparticles oriented in a certain configuration by a magnetic field. Because of the way they’re oriented, particles on both sides of a tear are magnetically attracted to one another, causing a device printed with the ink to heal itself. The devices repair tears as wide as 3 millimeters—a record in the field of self-healing systems.

Researchers detail their findings in the Nov. 2 issue of Science Advances.

“Our work holds considerable promise for widespread practical applications for long-lasting printed electronic devices,” said Joseph Wang, director of the Center for Wearable Sensors and chair of the nanoengineering department at UC San Diego.

Existing self-healing materials require an external trigger to kick start the healing process. They also take anywhere between a few minutes to several days to work. By contrast, the system developed by Wang and colleagues doesn’t require any outside catalyst to work. Damage is repaired within about 50 milliseconds (0.05 seconds).

Engineers used the ink to print batteries, electrochemical sensors and wearable, textile-based electrical circuits (see video). They then set about damaging these devices by cutting them and pulling them apart to create increasingly wide gaps. Researchers repeatedly damaged the devices nine times at the same location. They also inflicted damage in four different places on the same device. The devices still healed themselves and recovered their function while losing a minimum amount of conductivity.

For example, nanoengineers printed a self-healing circuit on the sleeve of a T-shirt and connected it with an LED light and a coin battery. The researchers then cut the circuit and the fabric it was printed on. At that point, the LED turned off. But then within a few seconds it started turning back on as the two sides of the circuit came together again and healed themselves, restoring conductivity.

“We wanted to develop a smart system with impressive self-healing abilities with easy-to-find, inexpensive materials,” said Amay Bandodkar, one of the papers’ first authors, who earned his Ph.D. in Wang’s lab and is now a postdoctoral researcher at Northwestern University.

Fabrication

Wang’s research group is a leader in the field of printed wearable sensors, so his team of nanoengineers naturally turned to ink as a starting point for their self-healing system.

Engineers loaded the ink with microparticles made of a type of magnet commonly used in research and made of neodymium, a soft, silvery metal. The particles’ magnetic field is much larger than their individual size. This is the key to the ink’s self-healing properties because the attraction between the particles leads to closing tears that are millimeters wide.

The particles also conduct electricity and are inexpensive. But they have poor electrochemical properties, making them difficult to use in the electrochemical devices, such as sensors, on their own. To remedy this problem, researchers added carbon black to the ink, a material commonly used to make batteries and sensors.

But researchers realized that the microparticles’ magnetic fields, when in their natural configuration, canceled each other out, which robbed them of their healing properties. Engineers solved this by printing the ink in the presence of an external magnetic field, which ensured that the particles oriented themselves to behave as a permanent magnet with two opposite poles at the end of each printed device. When the device is cut in two, the two damaged pieces act as different magnets that attract each other and self-heal.

In the future, engineers envision making different inks with different ingredients for a wide range of applications. In addition, they plan to develop computer simulations to test different self-healing ink recipes in silico before trying them out in the lab.

“All-printed magnetically self-healing electrochemical devices” by Amay J. Bandodkar, Christian S. Lopez, Allibai Mohanan, Vinu Mohan, Lu Yin, Rajan Kumar, Joseph Wang. Bandodkar is now a postdoctoral fellow at Northwestern University. All other authors are affiliated with the Department of Nanoengineering at the Jacobs School of Engineering at UC San Diego.

Source: University of California San Diego – 02.11.2016.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Wiley-VCH 2016

Lithium ion battery for electronic textiles grows back together after breaking

Electronics that can be embedded in clothing are a growing trend. However, power sources remain a problem. In the journal Angewandte Chemie, scientists have now introduced thin, flexible, lithium ion batteries with self-healing properties that can be safely worn on the body. Even after completely breaking apart, the battery can grow back together without significant impact on its electrochemical properties. Existing lithium ion batteries for wearable electronics can be bent and rolled up without any problems, but can break when they are twisted too far or accidentally stepped on--which can happen often when being worn. This damage not only causes the battery to fail, it can also cause a... more read more

Scientists have developed a method of allowing materials, commonly used in aircraft and satellites, to self-heal cracks at temperatures well below freezing.

The paper, published in Royal Society Open Science, is the first to show that self-healing materials can be manipulated to operate at very low temperatures (-60°C). The team, led by the University of Birmingham (UK) and Harbin Institute of Technology (China), state that it could be applied to fibre-reinforced materials used in situations where repair or replacement is challenging such as offshore wind turbines, or even 'impossible', such as aircraft and satellites during flight. Self-healing composites are able to restore their properties automatically, when needing repair. In favourable conditions, composites have yielded impressive healing efficiencies. Indeed, previous research... more read more

Fans of Superman surely recall how the Man of Steel used immense heat and pressure generated by his bare hands to form a diamond out of a lump of coal.

The tribologists — scientists who study friction, wear, and lubrication — and computational materials scientists at the U.S. Department of Energy's (DOE's) Argonne National Laboratory will probably never be mistaken for superheroes. However, they recently applied the same principles and discovered a revolutionary diamond-like film of their own that is generated by the heat and pressure of an automotive engine. The discovery of this ultra-durable, self-lubricating tribofilm — a film that forms between moving surfaces — was first reported yesterday in the journal Nature. It could have profound implications for the efficiency and durability of future engines and other moving... more read more

Credit: Qing Wang / Penn State

Electronic materials have been a major stumbling block for the advance of flexible electronics because existing materials do not function well after breaking and healing.

A new electronic material created by an international team, however, can heal all its functions automatically even after breaking multiple times. This material could improve the durability of wearable electronics. "Wearable and bendable electronics are subject to mechanical deformation over time, which could destroy or break them," said Qing Wang, professor of materials science and engineering, Penn State. "We wanted to find an electronic material that would repair itself to restore all of its functionality, and do so after multiple breaks." Self-healable materials are those that, after withstanding physical deformation such as being cut in half, naturally repair themselves... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED