MMaterialsgateNEWS 2017/03/15

Related MaterialsgateCARDS

Dramatic improvement in surface finishing of 3-D printing

Credit: Waseda University

New process combines better quality with low cost and less waste, giant step towards home 3-D printing

Waseda University researchers have developed a process to dramatically improve the quality of 3D printed resin products. The process combines greatly improved surface texture and higher structural rigidity with lower cost, less complexity, safer use of solvent chemicals and elimination of troublesome waste dust.

Kensuke Takagishi and Professor Shinjiro Umezu, both of the Waseda University Faculty of Science and Engineering, Department of Modern Mechanical Engineering, chose the Fused Deposition Modeling (FDM) type 3D printer, whose relatively low cost makes it most suited for in-home use, and addressed the issue of surface "ribbing," rough appearance due to grooves between layers of applied resin material.

This research is published in Nature's Scientific Reports.

One existing method for surface smoothing is polishing, or grinding down the high places to reduce the appearance of "ribs". However, the polishing devices add complexity and cost to the machine, and capture and disposal of the generated dust adds further complexity, making the whole machine impractical for household use.

Another existing method for finishing uses vaporized solvents to melt and smooth the surface of the printed piece. This method has the advantage of capturing some of the dissolved material in the bottom of the grooves, improving smoothness and structural integrity with less wasted resin; however complexity of the machine, indiscriminate dissolution of the entire surface, and handling of large amounts of flammable solvents are major issues.

The Waseda researchers developed and tested a method called 3D Chemical Melting Finishing (3D-CMF), which uses a tool like a felt-tip pen to selectively apply solvent to certain parts of the printed piece which require smoothing.

The new 3D-CMF method has major advantages over previous methods, which promise to move 3D printing into a much more attractive commercial position. 3D-CMF removes less material, creating less waste and achieving more precise shaping, and uses less solvent for better safety and lower cost. In addition, pen tips can be changed to further increase surface shaping precision.

Figures 1 and 2 explain the process and compare results visually between vaporized solvent and the 3D-CMF methods. Figure 3 compares methods by 6 variables.

The original article also includes data results of performance testing and photos of the devices used.

Source: Waseda University – 13.03.2017.

Reference: Development of the Improving Process for the 3D Printed Structure, Kensuke Takagishi & Shinjiro Umezu
Scientific Reports 7, Article number: 39852 (2017)

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Washington State University

Microstructures could have myriad uses, including batteries and ultrastrong materials

Washington State University researchers have developed a unique, 3-D manufacturing method that for the first time rapidly creates and precisely controls a material's architecture from the nanoscale to centimeters. The results closely mimic the intricate architecture of natural materials like wood and bone. They report on their work in the journal Science Advances and have filed for a patent. The work has many high-tech engineering applications. "This is a groundbreaking advance in the 3-D architecturing of materials at nano- to macroscales with applications in batteries, lightweight ultrastrong materials, catalytic converters, supercapacitors and biological scaffolds,"... more read more

For centuries, cellulose has formed the basis of the world's most abundantly printed-on material: paper. Now, thanks to new research at MIT, it may also become an abundant material to print with -- potentially providing a renewable, biodegradable alternative to the polymers currently used in 3-D printing materials.

"Cellulose is the most abundant organic polymer in the world," says MIT postdoc Sebastian Pattinson, lead author of a paper describing the new system in the journal Advanced Materials Technologies. The paper is co-authored by associate professor of mechanical engineering A. John Hart, the Mitsui Career Development Professor in Contemporary Technology. Cellulose, Pattinson explains, is "the most important component in giving wood its mechanical properties. And because it's so inexpensive, it's biorenewable, biodegradable, and also very chemically versatile, it's used in a lot of products. Cellulose and its derivatives are used in pharmaceuticals, medical devices... more read more

Credit: Courtesy of Dinesh K. Patel

Due to its excellent material properties of elasticity, resilience, and electrical and thermal insulation, elastomers have been used in a myriad of applications. They are especially ideal for fabricating soft robots, flexible electronics and smart biomedical devices which require soft and deformable material properties to establish safe and smooth interactions with humans externally and internally.

However, to date, the most widely used silicon rubber-based elastomers require a thermal curing process which significantly limits its fabrication in traditional ways, such as by cutting, molding and casting, which constrains design freedom and geometric complexity. In order to enrich the design and fabrication flexibility, researchers attempted to use 3D printing techniques, such as the ultraviolet (UV) curing based 3D printing techniques that solidify liquid polymer resins to 3D objects through patterned UV light, to fabricate elastomeric 3D objects. Nevertheless, most of the commercially available UV curable thus 3D printable elastomers break at less than 200% (two times the original length... more read more

Researchers at the University of Bath suggest developments in 3D printing techniques could open the door to the advancement of membrane capabilities.

This work is part of the University's Centre for Advanced Separations Engineering (CASE) and is the first time the properties of different 3D printing techniques available to membrane fabrication have been assessed. Membranes are a semi-permeable selective barrier that separate the molecules in a mixture within a gas or liquid into two streams, a key example of this being the separation of salt from water for desalination using reverse osmosis membranes. 3D printing, otherwise known as Additive Manufacturing, has the ability to create almost any geometrically complex shape or feature in a range of materials across different scales. It has applications in various areas including medicine... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products