MMaterialsgateNEWS 2018/01/11

Sensors: Researchers Develop World's Smallest Wearable Device

A Northwestern Engineering professor, working in conjunction with the global beauty company L’Oréal, has developed the smallest wearable device in the world. The wafer-thin, feather-light sensor can fit on a fingernail and precisely measures a person’s exposure to UV light from the sun.

The device, as light as a raindrop and smaller in circumference than an M&M, is powered by the sun and contains the world’s most sophisticated and accurate UV dosimeter. It was unveiled Sunday, Jan. 7, at the 2018 Consumer Electronics Show in Las Vegas and will be called UV Sense.

“We think it provides the most convenient, most accurate way for people to measure sun exposure in a quantitative manner,” said John A. Rogers, the Louis Simpson and Kimberly Querrey Professor of Materials Science and Engineering, Biomedical Engineering, and Neurological Surgery in Northwestern's McCormick School of Engineering. “The broader goal is to provide a technology platform that can save lives and reduce skin cancers by allowing individuals, on a personalized level, to modulate their exposure to the sun.”

UV Sense has no moving parts, no battery, is waterproof and can be attached to almost any part of the body or clothing, where it continuously measures UV exposure in a unique accumulation mode.

Rogers said the device, created in a partnership with L’Oréal, is meant to stick on a thumbnail — a stable, rigid surface that ensures robust device adherence. It’s also an optimal location to measure exposure to the sun.

“It is orders of magnitude smaller than anything else out there,” Rogers said. “It also is one of the few sensors that directly measures the most harmful UV rays. Further, it simultaneously records body temperature, which is also very important in the context of sun exposure.”

Users need only to download an app on their smartphone, then swipe the phone over the device to see their exposure to the sun, either for that day or over time. The app can suggest other, less UV-intense times for outdoor activities or give peace of mind to individuals who are concerned about overexposure.

“UV Sense is transformative technology that permits people to receive real-time advice via mobile phone messages when they exceed their daily safe sun limit,” said June K. Robinson, M.D., research professor of dermatology at Feinberg School of Medicine.

Roger’s research group at Northwestern, in collaboration with Robinson and researchers at Feinberg, have received a roughly $2 million grant from the National Institutes of Health to deploy the fingernail UV sensors in human clinical studies of sun exposure in cohorts of subjects who are at risk for melanoma. The first pre-pilot field trials launched in December.

“Sunlight is the most potent known carcinogen,” Rogers said. “It’s responsible for more cancers than any other carcinogen known to man, and it’s everywhere — even in Chicago.”

On average, half the US population experiences a sunburn once a year or more, he said, and there are more than a million melanoma survivors in the US alone.

Guive Balooch, Global Vice President of L’Oréal’s Technology Incubator, said the company’s research shows that overexposure to UV rays is a top health and beauty concern of consumers worldwide.

“With this knowledge, we set out to create something that blends problem-solving technology with human-centered design to reach even more consumers who require additional information about their UV exposure,” Balooch said. “Whenever we develop a new technology, our goal is to make an enormous global impact by enhancing consumers’ lives.”

Rogers said the aesthetic design features of UV Sense are also important because they can help break down barriers to adoption. The device can be produced in any color with any pattern, logo or branding.

Last year, Rogers’ cutting-edge invention, the “Microfluidic System on the Skin,” was selected as an exhibit at New York’s Museum of Modern Art. As the Rogers Lab at Northwestern continues to develop new products, Rogers believes the technology his team developed will have other applications that can help consumers better monitor their health.

“What also excites me is that there’s novelty at the level of the academic science,” Rogers said. “The resulting technology has strong potential for positive impact on human health.”

Source: Northwestern University - 09.01.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Iowa State University plant scientist Patrick Schnable quickly described how he measured the time it takes for two kinds of corn plants to move water from their roots, to their lower leaves and then to their upper leaves.

This was no technical, precise, poster talk. This was a researcher interested in working with new, low-cost, easily produced, graphene-based, sensors-on-tape that can be attached to plants and can provide new kinds of data to researchers and farmers. “With a tool like this, we can begin to breed plants that are more efficient in using water,” he said. “That’s exciting. We couldn’t do this before. But, once we can measure something, we can begin to understand it.” The tool making these water measurements possible is a tiny graphene sensor that can be taped to plants – researchers have dubbed it a “plant tattoo sensor.” Graphene is a wonder material. It’s a carbon honeycomb... more read more

A KAIST team made an ultra-fast hydrogen sensor that can detect hydrogen gas levels under 1% in less than seven seconds.

The sensor also can detect hundreds of parts per million levels of hydrogen gas within 60 seconds at room temperature. A research group under Professor Il-Doo Kim in the Department of Materials Science and Engineering at KAIST, in collaboration with Professor Reginald M. Penner of the University of California-Irvine, has developed an ultra-fast hydrogen gas detection system based on a palladium (Pd) nanowire array coated with a metal-organic framework (MOF). Hydrogen has been regarded as an eco-friendly next-generation energy source. However, it is a flammable gas that can explode even with a small spark. For safety, the lower explosion limit for hydrogen gas is 4 vol% so sensors should... more read more

More on this topic:

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED