MMaterialsgateNEWS 2018/02/06

New technology: Edible QR code can be the medicine of the future

Researchers at the University of Copenhagen have developed a new method for the production of medicine. They print medical drugs in QR coded patterns onto an edible material.

The production can be tailored to fit each patient and has the potential to protect against wrong medication and fake medicine according to the researchers.

For the last 100 years, researchers have constantly pushed the boundaries for our knowledge about medicine and how different bodies can respond differently to it. However, the methods for the production of medicine have not yet moved itself away from mass production. Many who have a given illness get the same product with equal amount of an active compound.

This production might soon be in the past. In a new study, researchers from the University of Copenhagen together with colleagues from Åbo Akademi University in Finland have developed a new method for producing medicine. They produce a white edible material. Here, they print a QR code consisting of a medical drug.

“This technology is promising, because the medical drug can be dosed exactly the way you want it to. This gives an opportunity to tailor the medication according to the patient getting it,” says Natalja Genina, Assistant Professor at Department of Pharmacy.

Potential for reducing wrong medication and fake medicine

The shape of a QR code also enables storage of data in the “pill” itself.

“Simply doing a quick scan, you can get all the information about the pharmaceutical product. In that sense it can potentially reduce cases of wrong medication and fake medicine,” says Natalja Genina.

The researchers hope that in the future a regular printer will be able to apply the medical drug in the pattern of a QR code, while the edible material will have to be produced in advance to allow on-demand production of medical drug near end-users.

“If we are successful with applying this production method to relatively simple printers, then it can enable the innovative production of personalized medicine and rethinking of the whole supply chain,” says professor Jukka Rantanen from Department of Pharmacy.

The researchers are now working to refine the methods for this medical production.

Source: University of Copenhagen The Faculty of Health and Medical Sciences – 31.01.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Method seeks to improve quality assurance for today’s complex car paints

Many of today’s cars are coated with paint that exhibits a metallic or glittery shine. The exact sparkle and color you see is determined by the distribution and characteristics of tiny metal flakes used in the paint. A new approach based on the medical imaging technique optical coherence tomography (OCT) provides the car industry with a practical way to automatically analyze these metal flakes, which until now have been difficult to image, in order to improve the efficiency of the automotive finishing process. “We have demonstrated, for the first time, through OCT and our image analysis approach, we are able to quantitatively and automatically measure the size, number and orientation... more read more

Brigham Young University researchers have developed new glass technology that could add a new level of flexibility to the microscopic world of medical devices.

Led by electrical engineering professor Aaron Hawkins, the researchers have found a way to make the normally brittle material of glass bend and flex. The research opens up the ability to create a new family of lab-on-a-chip devices based on flexing glass. "If you keep the movements to the nanoscale, glass can still snap back into shape," Hawkins said. "We've created glass membranes that can move up and down and bend. They are the first building blocks of a whole new plumbing system that could move very small volumes of liquid around." While current lab-on-a-chip membrane devices effectively function on the microscale, Hawkins' research, recently published... more read more

University of British Columbia researchers have developed a magnetic drug implant--the first of its kind in Canada--that could offer an alternative for patients struggling with numerous pills or intravenous injections.

The device, a silicone sponge with magnetic carbonyl iron particles wrapped in a round polymer layer, measures just six millimetres in diameter. The drug is injected into the device and then surgically implanted in the area being treated. Passing a magnet over the patient's skin activates the device by deforming the sponge and triggering the release of the drug into surrounding tissue through a tiny opening. "Drug implants can be safe and effective for treating many conditions, and magnetically controlled implants are particularly interesting because you can adjust the dose after implantation by using different magnet strengths. Many other implants lack that feature," said... more read more

Colorado State University engineers have grown 'superhemophobic' titanium surfaces that could form the basis for biocompatible medical devices

Medical implants like stents, catheters and tubing introduce risk for blood clotting and infection - a perpetual problem for many patients. Colorado State University engineers offer a potential solution: A specially grown, "superhemophobic" titanium surface that's extremely repellent to blood. The material could form the basis for surgical implants with lower risk of rejection by the body. It's an outside-the-box innovation achieved at the intersection of two disciplines: biomedical engineering and materials science. The work, recently published in Advanced Healthcare Materials, is a collaboration between the labs of Arun Kota, assistant professor of mechanical engineering... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED