MMaterialsgateNEWS 2017/12/12

New research identifies how 3D printed metals can be both strong and ductile

A new technique by which to 3D print metals, involving a widely used stainless steel, has been show to achieve exception levels of both strength and ductility, when compared to counterparts from more conventional processes.

The findings, published in Materials Today, outline how a joint research team from the University of Birmingham, UK, Stockholm University, Sweden and Zhejiang University, China were able to optimizing the process parameters during 3D printing to achieve the results.

The research is contrary to the sceptcism around the ability to make strong and ductile metals through 3D printing, and as such the discovery is crucial to moving the technology forward for the manufacturing of heavy duty parts.

3D printing has long been recognized as a technology which can potentially change our way of manufacturing, allowing us to rapidly build up objects with complex and customized geometries.

With the accelerating development of the technology in recent years, 3D printing, especially metal 3D printing, is quickly progressing toward widespread industrial application.

Indeed, the manufacturing giant General Electric (GE) has already been using metal 3D printing to produce some key parts, such as the fuel nozzles in their latest LEAP aircraft engine. The technology helps GE to reduce 900 separate components into just 16, and make fuel nozzles 40% lighter and 60% cheaper.

The global revenue from the industry is forecasted to be over 20 billion USD per year by 2025. Despite the bright future, the quality of the products from metal 3D printing has been prone to scepticism. In most metal 3D printing processes, products are directly built up from metal powders, which makes it susceptible to defects, thus causing deterioration of mechanical properties.

Dr. Leifeng Liu, who is the main participant of the project, recently moved to the University of Birmingham from Stockholm University as an AMCASH research fellow. He said, “Strength and ductility are natural enemies of one another, most methods developed to strengthen metals consequently reduce ductility.”

“The 3D printing technique is known to produce objects with previously inaccessible shapes, and our work shows that it also provides the possibility to produce the next generation of structural alloys with significant improvements in both strength and ductility.”

This has been made possible thanks to the ultrafast cooling rate, estimated to range from 1000oC per second to 100 million oC per second – something that was not possible in bulk metal production process until the emergence of 3D printing.

Metals that are cooled down so quickly result in a so-called non-equilibrium state, allowing for some amazing microstructures like the sub-micro-sized dislocation network - which was revealed in this paper to be the main reason of the improved mechanical properties.

Dr Liu continued, “This work gives researchers a brand new tool to design new alloy systems with ultra-mechanical properties. It also helps metal 3D printing to gain access into the field where high mechanical properties are required like structural parts in aerospace and automotive industry.”

Source: University of Birmingham – 11.12.2017.

Publication:

L. Liu et al., Dislocation network in additive manufactured steel breaks strength–ductility trade-off, Materials Today, 2017,

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

"Marine grade" stainless steel is valued for its performance under corrosive environments and for its high ductility -- the ability to bend without breaking under stress -- making it a preferred choice for oil pipelines, welding, kitchen utensils, chemical equipment, medical implants, engine parts and nuclear waste storage.

However, conventional techniques for strengthening this class of stainless steels typically comes at the expense of ductility. Lawrence Livermore National Laboratory (LLNL) researchers, along with collaborators at Ames National Laboratory (link is external), Georgia Tech University (link is external) and Oregon State University (link is external), have achieved a breakthrough in 3D printing one of the most common forms of marine grade stainless steel -- a low-carbon type called 316L -- that promises an unparalleled combination of high-strength and high-ductility properties for the ubiquitous alloy. The research appears online Oct. 30 in the journal Nature Materials (link is external... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED