MMaterialsgateNEWS 2018/02/15

Suiker’s equations prevent 3D-printed walls from collapsing or falling over

3D-printed materials commonly are soft and flexible during printing, leaving printed walls susceptible to collapse or falling over. Akke Suiker, professor in Applied Mechanics at Eindhoven University of Technology, had a Eureka moment and saw the solution to this structural problem.

He developed a model with which engineers can now easily determine the dimensions and printing speeds for which printed wall structures remain stable. His formulae are so elementary that they can become commonplace in the fast growing field of 3D printing.

Conventional concrete deposited in formwork typically is allowed to harden over period of several weeks. But 3D-printed concrete is not. With no supporting formwork, it almost immediately has to bear the weight of the subsequent layers of concrete that are printed on top of it. Everybody can feel the tension rising in their body as the structure gets higher. Is it already stiff and strong enough to add yet another layer on top? It is one of the most important issues in the new field of 3D printing.

This issue initially was not part of the package of tasks of Professor Akke Suiker, who regularly saw the king-sized concrete printer of his university in action on the way to his office. But on a Saturday morning last March he woke up with an exciting idea how to solve the problem, already jotting down the first mathematical equations on paper during breakfast. In the six months that follow Suiker is completely occupied by the problem, working feverishly on the details. The results are published this week in the International Journal of Mechanical Sciences1.

Using his equations, Suiker is able to calculate how quickly he can lay down printing layers, given the material curing characteristics and wall dimensions - of course without the structure collapsing. But he can also calculate how to make the structure with as little material as possible, and what the influence of structural irregularities is. Or what happens when he makes a wall slightly thicker or increases the material curing rate, or uses a completely different material. Or if the wall has a tendency just to fall over or also pulls the connecting structure with it. In the latter case, the consequential damage that occurs clearly is considerably greater. In fact, there are about 15 to 20 factors that one has to take into account, but because Suiker has conveniently scaled his equations, he was ultimately left with just five dimensionless parameters. Hence the problem is tackled with a very elegant and insightful model.

When asked whether his results will be important for the field of 3D printing, Suiker is without doubt. "They should be. The insights provided by the model create essential basic knowledge for everyone who prints 3D structures. For structural designers, engineering firms but also, for example, for companies that print thin-walled plastic prostheses of small dimensions, because that is where my equations also apply." The first interest is already there: he has been invited by Cambridge University to give a seminar lecture about his work.

Suiker validated his model with results of tests done with the 3D concrete printer at Eindhoven University of Technology, carried out by PhD student Rob Wolfs. He developed a computer model at the same time as Suiker, with which he can also calculate the structural behavior during the printing process, but based on the finite-element method2. It is great for both researchers that the results from their independently developed models confirm each other.
Wolfs’ model is different in terms of application. It works well for a detailed analysis of complex problems under specific printing conditions, but due to the purely numerical character and the requested computing time it is not so suitable for identifying the most important effects of the printing process, and for mapping out overall trends.

Source: Eindhoven University of Technology – 14.02.2018.

1 Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments. A.S.J. Suiker. International Journal of Mechanical Sciences. DOI:
2 Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Cement and Concrete Research. DOI:

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Synthesizing organic scaffolds that contain metal ions enables 3-D printing of metallic structures that are orders of magnitude smaller than previously possible

For the first time, it is possible to create complex nanoscale metal structures using 3-D printing, thanks to a new technique developed at Caltech. The process, once scaled up, could be used in a wide variety of applications, from building tiny medical implants to creating 3-D logic circuits on computer chips to engineering ultralightweight aircraft components. It also opens the door to the creation of a new class of materials with unusual properties that are based on their internal structure. The technique is described in a study that will be published in Nature Communications on February 9. In 3-D printing—also known as additive manufacturing—an object is built layer by layer, allowing... more read more

The temporary structures, which can be degraded away with a biocompatible chemical trigger, could be useful in fabricating microfluidic devices, creating biomaterials that respond dynamically to stimuli and in patterning artificial tissue.

Brown University engineers have demonstrated a technique for making 3-D-printed biomaterials that can degrade on demand, which can be useful in making intricately patterned microfluidic devices or in making cell cultures than can change dynamically during experiments. “It’s a bit like Legos,” said Ian Wong, an assistant professor in Brown’s School of Engineering and co-author of the research. “We can attach polymers together to build 3-D structures, and then gently detach them again under biocompatible conditions.” The research is published in the journal Lab on a Chip. The Brown team made their new degradable structures using a type of 3-D printing called stereolithography... more read more

From aerospace and defense to digital dentistry and medical devices, 3-D printed parts are used in a variety of industries.

Currently, 3-D printed parts are very fragile and traditionally used in the prototyping phase of materials or as a toy for display. A doctoral student in the Department of Materials Science and Engineering at Texas A&M University has pioneered a countermeasure to transform the landscape of 3-D printing today. Brandon Sweeney and his advisor Dr. Micah Green, associate professor in the Department of Chemical Engineering, discovered a way to make 3-D printed parts stronger and immediately useful in real-world applications. Sweeney and Green applied the traditional welding concepts to bond the submillimeter layers in a 3-D printed part together, while in a microwave. Sweeney began working... more read more

Using the principles behind the formation of sandcastles from wet sand, North Carolina State University researchers have achieved 3-D printing of flexible and porous silicone rubber structures through a new technique that combines water with solid and liquid forms of silicone into a pasty ink that can be fed through a 3-D printer.

The finding could have biomedical applications and uses in soft robotics. In a paper published today in Advanced Materials, corresponding author Orlin Velev and colleagues show that, in a water medium, liquid silicone rubber can be used to form bridges between tiny silicone rubber beads to link them together – much as a small amount of water can shape sand particles into sandcastles. Interestingly, the technique can be used in a dry or a wet environment, suggesting that it has the potential to be used in live tissue – think of an ultraflexible mesh encapsulating a healing droplet, or a soft bandage that can be applied or even directly printed on some portion of the human body, for... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED