MMaterialsgateNEWS 2016/06/07

Related MaterialsgateCARDS

New alloy promises to boost rare earth production while improving energy efficiency of engines

Researchers at the Department of Energy’s Oak Ridge National Laboratory and partners Lawrence Livermore National Laboratory and Wisconsin-based Eck Industries have developed aluminum alloys that are both easier to work with and more heat tolerant than existing products.

What may be more important, however, is that the alloys—which contain cerium—have the potential to jump-start the United States’ production of rare earth elements.

ORNL scientists Zach Sims, Michael McGuire and Orlando Rios, along with colleagues from Eck, LLNL and Ames Laboratory in Iowa, discuss the technical and economic possibilities for aluminum–cerium alloys in an article in JOM, a publication of the Minerals, Metals & Materials Society.

The team is working as part of the Critical Materials Institute, an Energy Innovation Hub created by the U.S. Department of Energy (DOE) and managed out of DOE's Advanced Manufacturing Office. Based at Ames, the institute works to increase the availability of rare earth metals and other materials critical for U.S. energy security.

Rare earths are a group of elements critical to electronics, alternative energy and other modern technologies. Modern windmills and hybrid autos, for example, rely on strong permanent magnets made with the rare earth elements neodymium and dysprosium. Yet there is no production occurring in North America at this time.

One problem is that cerium accounts for up to half of the rare earth content of many rare earth ores, including those in the United States, and it has been difficult for rare earth producers to find a market for all of the cerium mined. The United States' most common rare earth ore, in fact, contains three times more cerium than neodymium and 500 times more cerium than dysprosium.

Aluminum–cerium alloys promise to boost domestic rare earth mining by increasing the demand and, eventually, the value of cerium.

“We have these rare earths that we need for energy technologies,” said Rios, “but when you go to extract rare earths, the majority is cerium and lanthanum, which have limited large-volume uses.”

If, for example, the new alloys find a place in internal combustion engines, they could quickly transform cerium from an inconvenient byproduct of rare earth mining to a valuable product in itself.

“The aluminum industry is huge,” Rios explained. “A lot of aluminum is used in the auto industry, so even a very small implementation into that market would use an enormous amount of cerium.” A 1 percent penetration into the market for aluminum alloys would translate to 3,000 tons of cerium, he added.

Rios said components made with aluminum-cerium alloys offer several advantages over those made from existing aluminum alloys, including low cost, high castability, reduced heat-treatment requirements and exceptional high-temperature stability.

“Most alloys with exceptional properties are more difficult to cast,” said David Weiss, vice president for engineering and research and development at Eck Industries, “but the aluminum-cerium system has equivalent casting characteristics to the aluminum-silicon alloys.”

The key to the alloys' high-temperature performance is a specific aluminum-cerium compound, or intermetallic, which forms inside the alloys as they are melted and cast. This intermetallic melts only at temperatures above 2,000 degrees Fahrenheit.

That heat tolerance makes aluminum–cerium alloys very attractive for use in internal combustion engines, Rios noted. Tests have shown the new alloys to be stable at 300 degrees Celsius (572 degrees Fahrenheit), a temperature that would cause traditional alloys to begin disintegrating. In addition, the stability of this intermetallic sometimes eliminates the need for heat treatments typically needed for aluminum alloys.

Not only would aluminum-cerium alloys allow engines to increase fuel efficiency directly by running hotter, they may also increase fuel efficiency indirectly, by paving the way for lighter engines that use small aluminum-based components or use aluminum alloys to replace cast iron components such as cylinder blocks, transmission cases and cylinder heads.

The team has already cast prototype aircraft cylinder heads in conventional sand molds. The team also cast a fully functional cylinder head for a fossil fuel-powered electric generator in 3D-printed sand molds. This first-of-a-kind demonstration led to a successful engine test performed at ORNL’s National Transportation Research Center. The engine was shown to handle exhaust temperatures of over 600 degrees Celsius.

“Three-dimensional printed molds are typically very hard to fill," said ORNL physicist Zachary Sims, "but aluminum–cerium alloys can completely fill the mold thanks to their exceptional castability.”

The alloys were jointly invented by researchers at ORNL and Eck Industries. Colleagues at Eck Industries contributed expertise in aluminum casting, and LLNL researchers analyzed the aluminum-cerium castings using synchrotron source X-ray computed tomography.

Source: Oak Ridge National Laboratory – 03.06.2016.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

New approach to preventing embrittlement could be useful in nuclear reactors.

High-tech metal alloys are widely used in important materials such as the cladding that protects the fuel inside a nuclear reactor. But even the best alloys degrade over time, victims of a reactor’s high temperatures, radiation, and hydrogen-rich environment. Now, a team of MIT researchers has found a way of greatly reducing the damaging effects these metals suffer from exposure to hydrogen. The team’s analysis focused on zirconium alloys, which are widely used in the nuclear industry, but the basic principles they found could apply to many metallic alloys used in other energy systems and infrastructure applications, the researchers say. The findings appear in the journal Physical Review... more read more

A team of Northwestern University engineers has created a new way to print three-dimensional metallic objects using rust and metal powders.

While current methods rely on vast metal powder beds and expensive lasers or electron beams, Northwestern's new technique uses liquid inks and common furnaces, resulting in a cheaper, faster, and more uniform process. The Northwestern team also demonstrated that the new method works for an extensive variety of metals, metal mixtures, alloys, and metal oxides and compounds. "This is exciting because most advanced manufacturing methods being used for metallic printing are limited as far as which metals and alloys can be printed and what types of architecture can be created," said Ramille Shah, assistant professor of materials science and engineering at Northwestern's McCormick... more read more

Researchers at Berkeley and Oak Ridge Labs Test a Multi-Element High-Entropy Alloy with Surprising Results

A new concept in metallic alloy design – called “high‐entropy alloys” – has yielded a multiple-element material that not only tests out as one of the toughest on record, but, unlike most materials, the toughness as well as the strength and ductility of this alloy actually improves at cryogenic temperatures. This multi-element alloy was synthesized and tested through a collaboration of researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley and Oak Ridge National Laboratories (Berkeley Lab and ORNL). “We examined CrMnFeCoNi, a high‐entropy alloy that contains five major elements rather than one dominant one,” says Robert Ritchie, a materials scientist with... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED