MMaterialsgateNEWS 2015/12/28

Related MaterialsgateCARDS

Lightweight Design: Researchers create exceptionally strong and lightweight new metal

Magnesium infused with dense silicon carbide nanoparticles could be used for airplanes, cars, mobile electronics and more

A team led by researchers from the UCLA Henry Samueli School of Engineering and Applied Science has created a super-strong yet light structural metal with extremely high specific strength and modulus, or stiffness-to-weight ratio. The new metal is composed of magnesium infused with a dense and even dispersal of ceramic silicon carbide nanoparticles. It could be used to make lighter airplanes, spacecraft, and cars, helping to improve fuel efficiency, as well as in mobile electronics and biomedical devices.

To create the super-strong but lightweight metal, the team found a new way to disperse and stabilize nanoparticles in molten metals. They also developed a scalable manufacturing method that could pave the way for more high-performance lightweight metals. The research was published today in Nature.

"It's been proposed that nanoparticles could really enhance the strength of metals without damaging their plasticity, especially light metals like magnesium, but no groups have been able to disperse ceramic nanoparticles in molten metals until now," said Xiaochun Li, the principal investigator on the research and Raytheon Chair in Manufacturing Engineering at UCLA. "With an infusion of physics and materials processing, our method paves a new way to enhance the performance of many different kinds of metals by evenly infusing dense nanoparticles to enhance the performance of metals to meet energy and sustainability challenges in today's society."

Structural metals are load-bearing metals; they are used in buildings and vehicles. Magnesium, at just two-thirds the density of aluminum, is the lightest structural metal. Silicon carbide is an ultra-hard ceramic commonly used in industrial cutting blades. The researchers' technique of infusing a large number of silicon carbide particles smaller than 100 nanometers into magnesium added significant strength, stiffness, plasticity and durability under high temperatures.

The researchers' new silicon carbide-infused magnesium demonstrated record levels of specific strength -- how much weight a material can withstand before breaking -- and specific modulus -- the material's stiffness-to-weight ratio. It also showed superior stability at high temperatures.

Ceramic particles have long been considered as a potential way to make metals stronger. However, with microscale ceramic particles, the infusion process results in a loss of plasticity.

Nanoscale particles, by contrast, can enhance strength while maintaining or even improving metals' plasticity. But nanoscale ceramic particles tend to clump together rather than dispersing evenly, due to the tendency of small particles to attract one other.

To counteract this issue, researchers dispersed the particles into a molten magnesium zinc alloy. The newly discovered nanoparticle dispersion relies on the kinetic energy in the particles' movement. This stabilizes the particles' dispersion and prevents clumping.

To further enhance the new metal's strength, the researchers used a technique called high-pressure torsion to compress it.

"The results we obtained so far are just scratching the surface of the hidden treasure for a new class of metals with revolutionary properties and functionalities," Li said.

The new metal (more accurately called a metal nanocomposite) is about 14 percent silicon carbide nanoparticles and 86 percent magnesium. The researchers noted that magnesium is an abundant resource and that scaling up its use would not cause environmental damage.

Source: University of California - Los Angeles - 23.12.2015.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Materials researchers love sea creatures. Mother-of-pearl provokes ideas for smooth surfaces, clams inspire gluey substances, shark's skin is used to develop materials that reduce drag in water, and so on.

Researchers at the University of Copenhagen's Department of Chemistry have now found a model for strong, lightweight materials by diving below the sea surface to investigate a sea urchin cousin known as the heart urchin. Dirk Müter is an assistant professor in the Department of Chemistry's NanoGeoScience research group. He headed the project, which is now now published in Acta Biomaterialia under the title, "Microstructure and micromechanics of the heart urchin test from X-ray tomography". Heart urchins (Echinocardium cordatum), also known as sea potatoes, measure up to 5 cm in diameter, are heart shaped and burrow in sand. They extend a channel to feed upon organic... more read more

NYU School of Engineering's Nikhil Gupta and collaborators discover a way to expand the applications of metal matrix syntactic foams to autos, ships, trains, and more

A team of researchers reports success in pioneering tests of a layered material with a lightweight metal matrix syntactic foam core that holds significant potential for automobiles, trains, ships, and other applications requiring lightweight structural components that retain their strength even when bent or compressed. The research team of Nikhil Gupta, a NYU School of Engineering associate professor in the Department of Mechanical and Aerospace Engineering, working with the Toledo, Ohio, company Deep Springs Technology and the U.S. Army Research Laboratory, published their findings in Materials Science and Engineering: A. Conventional metal foams have gas-filled pores within the metal... more read more

A new Northwestern case study finds the method could reduce an airplane's weight by 4 to 7 percent

save dollars while also saving the environment. And the solution comes in three dimensions. By manufacturing aircrafts' metal parts with 3-D printing, airlines could save a significant amount of fuel, materials, and other resources. Led by Eric Masanet, the team used aircraft industry data to complete a case study of the life-cycle environmental effects of using 3-D printing for select metal aircraft parts, a technique that is already being adopted by the industry. The team concluded that 3-D printing the lighter and higher performance parts could significantly reduce both manufacturing waste and the weight of the airplane, thus saving fuel and money and decreasing carbon emissions... more read more

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

In microscopic images, the foam dubbed “GO-0.5BN” looks like a nanoscale building, with floors and walls that reinforce each other. The structure consists of a pair of two-dimensional materials: floors and walls of graphene oxide that self-assemble with the assistance of hexagonal boron nitride platelets. The researchers say the foam could find use in structural components, as supercapacitor and battery electrodes and for gas absorption, among other applications. The research by an international collaboration led by the Rice lab of materials scientist Pulickel Ajayan is detailed today in the online journal Nature Communications. Graphene oxide (GO) is a variant of graphene, the hexagonal... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED