MMaterialsgateNEWS 2017/11/03

Related MaterialsgateCARDS

Jellyfish-inspired electronic skin glows when it gets hurt

Credit: American Chemical Society

ACS Applied Materials & Interfaces:

Electronic-skin technologies for prosthetics and robots can detect the slightest touch or breeze. But oddly, the sensors that make this possible do not respond effectively to a harmful blow. Now researchers report in ACS Applied Materials & Interfaces the development of a jellyfish-inspired electronic skin that glows when the pressure against it is high enough to potentially cause an injury.

An electronic skin that can mimic the full range of biological skin’s sensitivity has great potential to transform prosthetics and robotics. Current technologies are very sensitive, but only within a narrow range of weak pressures. Under high pressures that could cause damage, the electronic skins’ sensitivity fades. To address this shortcoming, Bin Hu and colleagues at the Huazhong University of Science and Technology turned to the Atolla jellyfish for inspiration. This bioluminescent, deep-sea creature can feel changes in environmental pressure and flashes dramatically when it senses danger.

Building on the idea of a visual warning in response to a physical threat, the researchers combined electric and optical systems in a novel electronic skin to detect both slight and high-force pressures. They embedded two layers of stretchy, poly-dimethysiloxane, or PDMS, film with silver nanowires. These layers produce an electrical signal in response to slight pressures, such as those created by a breeze or contact with a leaf. Sandwiched in between the silver nanowire electrodes is a PDMS layer embedded with phosphors. This layer kicks in and glows with growing intensity as the physical force increases. The researchers say this approach more closely copies the wide range of pressures the human skin can feel.

Source: American Chemical Society – 01.11.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: UCLA Engineering

If a robot is sent to disable a roadside bomb — or delicately handle an egg while cooking you an omelet — it needs to be able to sense when objects are slipping out of its grasp.

Yet to date it’s been difficult or impossible for most robotic and prosthetic hands to accurately sense the vibrations and shear forces that occur, for example, when a finger is sliding along a tabletop or when an object begins to fall. Now, engineers from the University of Washington and UCLA have developed a flexible sensor “skin” that can be stretched over any part of a robot’s body or prosthetic to accurately convey information about shear forces and vibration that are critical to successfully grasping and manipulating objects. The bio-inspired robot sensor skin, described in a paper published in Sensors and Actuators A: Physical, mimics the way a human finger experiences tension... more read more

Credit: Yu-Yang Zhang / Chinese Academy of Sciences

Two-dimensional materials that can multitask.

That is the result of a new process that naturally produces patterned monolayers that can act as a base for creating a wide variety of novel materials with dual optical, magnetic, catalytic or sensing capabilities. “Patterned materials open up the possibility of having two functionalities in a single material, such as catalyzing a chemical reaction while simultaneously serving as a sensor for a second set of molecules,” said Sokrates Pantelides, William and Nancy McMinn Professor of Physics at Vanderbilt University, who coordinated the research with Professor Hong-Jun Gao at the Institute of Physics of the Chinese Academy of Sciences in Beijing. “Of course, you can do such a thing... more read more

Engineering researchers at the University of Minnesota have developed a revolutionary process for 3D printing stretchable electronic sensory devices that could give robots the ability to feel their environment.

The discovery is also a major step forward in printing electronics on real human skin. The research will be published in the next issue of Advanced Materials and is currently online. “This stretchable electronic fabric we developed has many practical uses,” said Michael McAlpine, a University of Minnesota mechanical engineering associate professor and lead researcher on the study. “Putting this type of ‘bionic skin’ on surgical robots would give surgeons the ability to actually feel during minimally invasive surgeries, which would make surgery easier instead of just using cameras like they do now. These sensors could also make it easier for other robots to walk and interact with... more read more

A team of engineers and scientists at Caltech and ETH Zurich have developed an artificial skin capable of detecting temperature changes using a mechanism similar to the one used by the organ that allows pit vipers to sense their prey.

The material could be grafted onto prosthetic limbs to restore temperature sensing in amputees. It could also be applied to first-aid bandages to alert health professionals of a temperature increase -- a sign of infection -- in wounds. A paper about the new material will be published in Science Robotics on February 1. While fabricating synthetic woods in a petri dish, a team led by Caltech's Chiara Daraio created a material that exhibited an electrical response to temperature changes in the lab. It turned out that the component responsible for the temperature sensitivity was pectin, a long-chain molecule present in plant cell walls. "Pectin is widely used in the food industry... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products