MMaterialsgateNEWS 2018/02/23

Related MaterialsgateCARDS

Snake-inspired robot uses kirigami to move

Credit: Image courtesy of Ahmad Rafsanjani/Harvard SEAS

Bioinspired soft actuator crawls without rigid parts

Who needs legs? With their sleek bodies, snakes can slither up to 14 miles-per-hour, squeeze into tight space, scale trees and swim. How do they do it? It’s all in the scales. As a snake moves, its scales grip the ground and propel the body forward — similar to how crampons help hikers establish footholds in slippery ice. This so-called friction-assisted locomotion is possible because of the shape and positioning of snake scales.

Now, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has developed a soft robot that uses those same principles of locomotion to crawl without any rigid components. The soft robotic scales are made using kirigami — an ancient Japanese paper craft that relies on cuts, rather than origami folds, to change the properties of a material. As the robot stretches, the flat kirigami surface is transformed into a 3D-textured surface, which grips the ground just like snake skin.

The research is published in Science Robotics.

“There has been a lot of research in recent years into how to fabricate these kinds of morphable, stretchable structures,” said Ahmad Rafsanjani, a postdoctoral fellow at SEAS and first author of the paper. “We have shown that kirigami principles can be integrated into soft robots to achieve locomotion in a way that is simpler, faster and cheaper than most previous techniques.”

The researchers started with a simple, flat plastic sheet. Using a laser cutter, they embedded an array of centimeter-scale cuts, experimenting with different shapes and sizes. Once cut, the researchers wrapped the sheet around a tube-like elastomer actuator, which expands and contracts with air like a balloon.

When the actuator expands, the kirigami cuts pop-out, forming a rough surface that grips the ground. When the actuator deflates, the cuts fold flat, propelling the crawler forward.

The researchers built a fully untethered robot, with its integrated on-board control, sensing, actuation and power supply packed into a tiny tail. They tested it crawling throughout Harvard’s campus.

The team experimented with various-shaped cuts, including triangular, circular and trapezoidal. They found that trapezoidal cuts — which most closely resemble the shape of snake scales —gave the robot a longer stride.

“We show that the locomotive properties of these kirigami-skins can be harnessed by properly balancing the cut geometry and the actuation protocol,” said Rafsanjani. “Moving forward, these components can be further optimized to improve the response of the system.”

“We believe that our kirigami-based strategy opens avenues for the design of a new class of soft crawlers,” said Katia Bertoldi, the William and Ami Kuan Danoff Professor of Applied Mechanics and senior author of the paper. “These all-terrain soft robots could one day travel across difficult environments for exploration, inspection, monitoring and search and rescue missions or perform complex, laparoscopic medical procedures.”

Source: Harvard John A. Paulson School of Engineering and Applied Sciences – 21.02.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Rob Felt

Researchers at Georgia Institute of Technology have developed a new computer-aided approach that streamlines the design process for origami-based structures, making it easier for engineers and scientists to conceptualize new ideas graphically while simultaneously generating the underlying mathematical data needed to build the structure in the real world.

Origami paper folding techniques in recent years have been at center of research efforts focused on finding practical engineering applications for the ancient art, with ideas ranging from deployable antennas to robotic arms. “Our work provides a means to predict computationally the real origami behavior of a design – something that up to now has not been easily done,” said Glaucio Paulino, a professor in the Georgia Tech School of Civil and Environmental Engineering. “With the new software, we can easily visualize and, most importantly, engineer the behavior of deployable, self-assembling, and adaptable origami systems.” The research, which was supported by the National Science... more read more

The ancient art of kirigami is inspiring a new class of materials

Origami-inspired materials use folds in materials to embed powerful functionality. However, all that folding can be pretty labor intensive. Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) are drawing material inspiration from another ancient Japanese paper craft -- kirigami. Kirigami relies on cuts, rather than folds, to change the structure and function of materials. In a new paper published in Physical Review Letters, SEAS researchers demonstrate how a thin, perforated sheet can be transformed into a foldable 3D structure by simply stretching the cut material. "We find that applying sufficiently large amounts of stretching, buckling... more read more

Engineers from the University of Bristol have developed a new shape-changing metamaterial using Kirigami, which is the ancient Japanese art of cutting and folding paper to obtain 3D shapes.

Metamaterials are a class of material engineered to produce properties that don’t occur naturally. Currently metamaterials are used to make artificial electromagnetic and vibration absorbers and high-performance sensors. Kirigami can be applied to transform two-dimensional sheet materials into complex three-dimensional shapes with a broader choice of geometries than 'classical' origami. The research, developed within a PhD programme run by the University's EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science (ACCIS CDT), is published today in Scientific Reports. The type of mechanical metamaterials using the Kirigami technique, developed... more read more

More on this topic:

Strategic 'Kirigami cuts' in advanced materials result in strength, not failure

A cut or tear in a material is typically a sign of weakness. Now, a Northwestern University, University of Illinois and Tsinghua University research team has created complex 3-D micro- and nanostructures out of silicon and other materials found in advanced technologies using a new assembly method that uses cuts to advantage. The Kirigami method builds on the team's "pop-up" fabrication technique -- going from a 2-D material to 3-D in an instant, like a pop-up children's book -- reported earlier this year in the journal Science. While an innovative first step, those earlier ribbon-like structures yielded open networks, with limited ability to achieve closed-form shapes... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products