MMaterialsgateNEWS 2015/12/14

New ceramic firefighting foam becomes stronger when temperature increases

A team of chemists from ITMO University, in collaboration with research company SOPOT, has developed a novel type of firefighting foam based on inorganic silica nanoparticles.

A team of chemists from ITMO University, in collaboration with research company SOPOT, has developed a novel type of firefighting foam based on inorganic silica nanoparticles.

The new foam beats existing analogues in fire extinguishing capacity, thermal and mechanical stability and biocompatibility. The results of the study were published in ACS Advanced Materials & Interfaces.

Fighting large-scale fires usually involves firefighting foams based on synthetic substances, such as prefluorinated surfactants, that, despite their effectiveness, are extremely toxic for living organisms. Complete biodegradation of such foams can last for more than 200 years, with residues quickly penetrating deep into soil and surface water. This leads to the the accumulation of toxic elements in living organisms, such as plants, animals and men. Many countries have declined the use of such fire extinguishing agents or opted for reducing the production of such substances despite the absence of any decent alternatives.

A group of scientists from the International Laboratory of Advanced Materials and Technologies (SCAMT) at ITMO University in Saint Petersburg and research company SOPOT devised a foam, which was awarded full biodegradability and whose fire extinguishing capacity is higher than that of any existing analogue currently in use by fire fighters. After the fire is extinguished, the substance actively absorbs water, softens and falls apart into bioinert silica particles. And even when the foam accidentally enters living organisms, it does not not pose any danger to them.

"Our foam is based on silica nanoparticles, which create a polymer network when exposed to air," says Alexander Vinogradov, deputy head of the SCAMT laboratory. "Such a network embraces and adheres to the burning object and momentarily cools it down. At the same time, the foam itself hardens. The inorganic origin of this polymer network allows it to resist temperatures above 1000 degrees Celsius, which ensures gigantic stability from the aggressive environment in the midst of a raging fire."

"Most existing foams are made of organic materials and quickly deteriorate when temperature approaches 300 degrees Celsius. In our case, the foam creates a hard frame that not only puts out the fire, but also protects the object from re-ignition. With ordinary foams, re-ignition occurs within seconds after flame is applied to the object again."

The scientists conducted a series of large-scale experiments of the hardening foam, including the imitation of an actual forest fire. The foam was used to create a flame retardant belt that was supposed stop the spread of the fire. The tests demonstrated that the foam easily localizes the forest fire seat and can stay active during the whole fire season.

"The flame retardant belt made of our foam will prevent the spread of any forest fire, regardless of its strength and level of complexity," says Gennady Kuprin, head of SOPOT. "We can localize the fire and be sure that the adjacent territories will be safe. This is crucial to organize evacuation works during forest fires, where 9 of 10 people die in our and other countries."

Source: ITMO University – 14.12.2015.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Berkeley Lab researchers develop nature-mimicking freeze-casting technique for fabricating advanced porous materials

It has often been said that nature is history's greatest innovator and if that is true then scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) are learning from the best. Berkeley Lab researchers have developed a freeze-casting technique that enables them to design and create strong, tough and lightweight materials comparable to bones, teeth, shells and wood. "Our bidirectional freeze-casting technique could provide an effective way of manufacturing novel structural materials, in particular advanced materials such as composites, where a high level of control over the structure is required," says Robert Ritchie, an... more read more

Researchers at the University of Tokyo have discovered a new type of material which stores heat energy for a prolonged period, which they have termed a “heat storage ceramic.”

This new material can be used as heat storage material for solar heat energy generation systems or efficient use of industrial heat waste, enabling recycling of heat energy, since the material releases the stored heat energy on demand by application of weak pressure. Materials capable of storing heat include those such as bricks or concrete that slowly release the stored heat, and others such as water or ethylene glycol that take in heat when they transform from a solid to a liquid. However, none of these materials can store heat energy over a long period as they naturally release it slowly over time. A material that could store heat energy for a long time and release it at the exact timing... more read more

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs.

The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations. Researchers frequently seek to improve a battery’s energy density by using a pure lithium anode, which offers the highest known theoretical capacity, and an aqueous electrolyte that can speedily transport lithium. The ORNL scientists believe the LLZO would be an ideal separator material, which is crucial. “Many novel batteries adopt these two features [lithium anode and aqueous electrolyte... more read more

Imagine a balloon that could float without using any lighter-than-air gas. Instead, it could simply have all of its air sucked out while maintaining its filled shape.

Such a vacuum balloon, which could help ease the world's current shortage of helium, can only be made if a new material existed that was strong enough to sustain the pressure generated by forcing out all that air while still being lightweight and flexible. Caltech materials scientist Julia Greer and her colleagues are on the path to developing such a material and many others that possess unheard-of combinations of properties. For example, they might create a material that is thermally insulating but also extremely lightweight, or one that is simultaneously strong, lightweight, and nonbreakable—properties that are generally thought to be mutually exclusive. Greer's team has... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products