MMaterialsgateNEWS 2017/05/24

A Recipe For Concrete That Can Withstand Road Salt Deterioration

Road salt, used in copious helpings each winter to protect them from ice and preserve safe driving conditions, is slowly degrading the concrete they’re made of.

Engineers have known for some time that calcium chloride salt, commonly used as deicer, reacts with the calcium hydroxide in concrete to form a chemical byproduct that causes roadways to crumble. A civil engineer from Drexel University is working on a new recipe for concrete, using cast-off products from furnaces, that can hold its own against the forces of chemical erosion.

More than 900,000 tons of deicing salt is used each winter in Pennsylvania alone. While winters in the Northeast put pressure on departments of transportation to keep roads clear and deicer is an effective part of that process, it also contributes to the thousands of miles of roads that need to be patched and repaired each year.

Yaghoob Farnam, PhD, an assistant professor in Drexel’s College of Engineering and director of the Advanced and Sustainable Infrastructure Materials Research Group, is looking for a solution to this problem in the recipe for concrete. Farnam created a method for using fly ash, slag and silica fume — leftovers from coal furnaces and the smelting process — in a new concrete mix that is more durable because it doesn’t react with road salt. He recently published his findings in the journal of Cement and Concrete Composites.

“Many departments of transportation have reduced the amount of calcium chloride they use to melt ice and snow, even though it is very efficient at doing so — because it has also been found to be very destructive,” Farnam said. “This research proves that by using alternate cementitious materials to make concrete, they can avoid the destructive chemical reaction and continue to use calcium chloride.”

The goal of Farnam’s work is to produce a concrete mix as strong as the ones currently used to build roads, that contains less calcium hydroxide — the ingredient that reacts with road salt to form a compound called calcium oxychloride. This chemical tends to expand when it is formed, and when that reaction happens in the pores of cement it can cause degradation and cracking. Farnam’s research led him to the conclusion that these “supplementary cement materials” could be substituted into the mix with a better result when they come in contact with calcium chloride deicing salt.

“There is a great push to use these power industry byproducts because they take up space and some of them can be harmful to the environment,” Farnam said. “We believed that portions of the byproducts such as fly ash, slag and silica fume could be used to make concrete that is both durable — and cheaper, because it uses recycled materials.”

To test his theory, Farman’s lab created cement samples using varying amounts of fly ash, silica fume and slag and compared them to samples of “ordinary Portland cement” — the most common type used in roads. His findings confirmed his hypothesis, namely that the samples containing more cement substitute materials did not produce as much calcium oxychloride.

An examination of the ordinary Portland cement samples, via acoustic emissions, x-rays and microscopy, revealed damage after just eight days of exposure due to the formation of calcium oxychloride while samples with proper amount of fly ash, silica fume and slag did not show damage during the testing period.

The study also revealed that higher concentrations of calcium chloride produce more calcium oxychloride when it reacts with concrete. So, theoretically, using lower concentrations of calcium chloride on roads could help extend their life, but it would also make it less effective as a deicing agent.

“An additional concern is that calcium oxychloride can form even if the concrete is not undergoing a freeze-thaw cycle. It is a chemical reaction that can happen at room temperature, so it can take place when the roads are pre-salted even if ice doesn’t form. And as the salts remain on the surface after a snowstorm the reaction will continue to degrade the road, so it is vitally important to minimize this reaction in order to preserve the infrastructure,” Farnam said.

Farnam’s lab will continue to search for ways to improve the materials we use in our infrastructure. They are currently pursuing a method for creating a protective layer on the surface of concrete by using bacteria that can prevent calcium oxychloride formation.

Source: Drexel University – 18.05.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

When you suffer a fall, an on-the-field collision or some other traumatic blow, the first thing the doctor will do is take an X-ray, CT scan or MRI to determine if anything has been damaged internally.

Researchers at the National Institute of Standards and Technology (NIST) are using the same principle, but in a more powerful form, to detect corrosion, the primary danger threatening the health of the steel framework within the nation's bridges, roads and other aging physical infrastructure. What they have developed is a noninvasive "spectral fingerprint" technique that reveals the corrosion of concrete-encased steel before it can cause any significant degradation of the structure it supports. The detection method is described in a new paper in the journal Applied Magnetic Resonance. When water and oxygen corrode iron, different iron oxide products are produced, with the... more read more

Professor of the Institute of Civil Engineering of Peter the Great Saint-Petersburg Polytechnic University (SPbPU) Andrey Ponomarev and a graduate student Alexander Rassokhin developed a new construction technology.

Scientists created several types of building blocks based on nanostructured high-strength lightweight concrete, reinforced with skew-angular composite coarse grids. The development has unique characteristics, enabling the increase of load-carrying capability by more than 200% and decrease in specific density of the construction by 80%. In addition, among the advantages, are resistance to corrosion, aggressive environments and excessive frost resistance. Researchers calculated that the service life of the building structures, made with the use of this reinforcement system, will increase at least 2-3 times in comparison with its modern analogs. "Such system allows to ensure the structure... more read more

Rice University scientists develop 'programmable' cement particles to attain enhanced properties

Bringing order to disorder is key to making stronger and greener cement, the paste that binds concrete. Scientists at Rice University have decoded the kinetic properties of cement and developed a way to "program" the microscopic, semicrystalline particles within. The process turns particles from disordered clumps into regimented cubes, spheres and other forms that combine to make the material less porous and more durable. Their study appears in the Royal Society of Chemistry's Journal of Materials Chemistry A. The technique may lead to stronger structures that require less concrete -- and less is better, said Rice materials scientist and lead author Rouzbeh Shahsavari... more read more

Researchers from North Carolina State University and the University of Eastern Finland have developed a new technique for tracking water in concrete structures - allowing engineers to identify potential issues before they become big problems.

"When we think about construction - from bridges and skyscrapers to nuclear plants and dams - they all rely on concrete," says Mohammad Pour-Ghaz, an assistant professor of civil, construction and environmental engineering at North Carolina State University and lead investigator on the project. Tracking concrete degradation is essential to public safety, and the culprit behind concrete degradation is water. Water contributes to the degradation by itself, or it can carry other chemicals - like the road salt used on bridges - that can expedite corrosion of both concrete and its underlying steel reinforcement structure. "We have developed a technology that allows us to identify... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED