MMaterialsgateNEWS 2017/06/09

Related MaterialsgateCARDS

Bionic: Oyster Shells Inspire New Method to Make Superstrong, Flexible Polymers

Credit: Figure courtesy of Sanat Kumar

Columbia Engineering technique could lead to stronger composite materials used in commercial products, opening the way for their use in structural applications

Researchers at Columbia Engineering have demonstrated for the first time a new technique that takes its inspiration from the nacre of oyster shells, a composite material that has extraordinary mechanical properties, including great strength and resilience. By changing the crystallization speed of a polymer initially well mixed with nanoparticles, the team was able to control how the nanoparticles self-assemble into structures at three very different length scale regimes. This multiscale ordering can make the base material almost an order of magnitude stiffer while still retaining the desired deformability and lightweight behavior of the polymeric materials. The study, led by Sanat Kumar, Bykhovsky Professor of Chemical Engineering, is published June 7 online in ACS Central Science.

“Essentially, we have created a one-step method to build a composite material that is significantly stronger than its host material,” says Kumar, an expert in polymer dynamics and self-assembly. “Our technique may improve the mechanical and potentially other physical properties of commercially relevant plastic materials, with applications in automobiles, protective coatings, and food/beverage packaging, things we use every day. And, looking further ahead, we may also be able to produce interesting electronic or optical properties of the nanocomposite materials, potentially enabling the fabrication of new materials and functional devices that can be used in structural applications such as buildings, but with the ability to monitor their health in situ.”

About 75 percent of commercially used polymers, including polyethylene used for packaging and polypropylene for bottles, are semicrystalline. These materials have low mechanical strength and thus cannot be used for many advanced applications, such as automobile fittings like tires, fanbelts, bumpers, etc. Researchers have known for decades, going back to the early 1900s, that varying nanoparticle dispersion in polymer, metal, and ceramic matrices can dramatically improve material properties. A good example in nature is nacre, which is 95 percent inorganic aragonite and 5 percent crystalline polymer (chitin); its hierarchical nanoparticle ordering—a mixture of intercalated brittle platelets and thin layers of elastic biopolymers—strongly improves its mechanical properties. In addition, parallel aragonite layers, held together by a nanoscale (∼10 nm thick) crystalline biopolymer layer, form “bricks” that subsequently assemble into “brick-and-mortar” superstructures at the micrometer scale and larger. This structure, at multiple length sizes, greatly increases its toughness.

“While achieving the spontaneous assembly of nanoparticles into a hierarchy of scales in a polymer host has been a ‘holy grail’ in nanoscience, until now there has been no established method to achieve this goal,” says Dan Zhao, Kumar’s PhD student and first author on this paper. “We addressed this challenge through the controlled, multiscale assembly of nanoparticles by leveraging the kinetics of polymer crystallization.”

While researchers focusing on polymer nanocomposites have achieved facile control of nanoparticle organization in an amorphous polymer matrix (i.e. the polymer does not crystallize), to date no one has been able to tune nanoparticle assembly in a crystalline polymer matrix. One related approach relied on ice-templating. Using this technique, investigators have crystallized small molecules (predominantly water) to organize colloid particles, but, due to the intrinsic kinetics of these processes, the particles are normally expelled into the microscale grain boundaries, and so researchers have not been able to order nanoparticles across the multiple scales necessary to mimic nacre.

Kumar’s group, experts in tuning the structure and therefore the properties of polymer nanocomposites, found that, by mixing nanoparticles in a solution of polymers (polyethylene oxide) and changing the crystallization speed by varying the degree of sub-cooling (namely how far below the melting point the crystallization was conducted), they could control how the nanoparticles self-assembled into three different scale regimes: nano, micro, and macro-meter. Each nanoparticle was evenly swathed by the polymers and evenly spaced before the crystallization process began. The nanoparticles then assembled into sheets (10−100 nm) and the sheets into aggregates on the microscale (1−10 μm) when the polymer was crystallized.

“This controlled self-assembly is important because it improves the stiffness of the materials while keeping them tough,” says Kumar. “And the materials retain the low density of the pure semicrystalline polymerso that we can keep the weight of a structural component low, a property that is critical to applications such as cars and planes, where weight is a critical consideration. With our versatile approach, we can vary either the particle or the polymer to achieve some specific material behavior or device performance.”

Kumar’s team plans next to examine the fundamentals that enables particles to move toward certain regions of the system, and to develop methods to speed up the kinetics of particle ordering, which currently takes a few days. They then plan to explore other application-driven polymer/particle systems, such as polylactide/nanoparticle systems that can be engineered as next-generation biodegradable and sustainable polymer nanocomposites, and polyethylene/silica, which is used in car bumpers, buildings, and bridges.

"The potential of replacing structural materials with these new composites could have a profound effect on sustainable materials as well as our nation’s' infrastructure," Kumar says.

Source: Columbia University School of Engineering and Applied Science – 07.06.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Sato M., et al., PLOS ONE, May 3, 2017

The spatial distribution of fibers in hollow bamboo cylinders is optimized to reinforce flexural rigidity, a new finding that sheds light on biomimetic approaches in the development of materials.

Light and tough, bamboo is widely used as a natural, functional material in Japan and other Asian countries. Bamboo is light because of its hollow structure, which allows the plant to grow faster with small amounts of woody parts and expose itself to sunlight above other trees. But this lightness also leaves bamboo vulnerable to strong crosswinds and can make it difficult for the plant to support its own weight. To overcome this shortcoming, the woody parts of bamboo are reinforced with thin but robust fibers (vascular bundles). Each fiber is as rigid as steel. Examining a cross section of bamboo reveals that fibers in the woody parts are not equally distributed. The density of the fibers... more read more

Credit: The University of Akron

Finding opens new potential to mass produce structural colors

Inspired by the hair of blue tarantulas, researchers from The University of Akron lead a team that made a structural-colored material that shows consistent color from all viewing directions. This finding overturns the conventional wisdom that long-range order photonic structures are always iridescent, opening new potential to mass produce structural colors because highly ordered designs are easy to scale-up and manufacture. Bor-Kai (Bill) Hsiung and his colleagues at UA, Ghent University, Karlsruhe Institute of Technology and the University of Nebraska-Lincoln published their research, which is featured on the cover of the January 2017 journal of Advanced Optical Materials. "Structural... more read more

Credit: Michael Monn, Haneesh Kesari / Brown University

Judging by their name alone, orange puffball sea sponges might seem unlikely paragons of structural strength.

But maintaining their shape at the bottom of the churning ocean is critical to the creatures' survival, and new research shows that tiny structural rods in their bodies have evolved the optimal shape to avoid buckling under pressure. The rods, called strongyloxea spicules, measure about 2 millimeters long and are thinner than a human hair. Hundreds of them are bundled together, forming stiff rib-like structures inside the orange puffball's spongy body. It was the odd and remarkably consistent shape of each spicule that caught the eye of Brown University engineers Haneesh Kesari and Michael Monn. Each one is symmetrically tapered along its length -- going gradually from fatter in... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED