MMaterialsgateNEWS 2018/05/07

UTA researchers develop highly elastic biodegradable hydrogel for bio-printing of new tissues

Researchers at The University of Texas at Arlington have developed a highly elastic biodegradable hydrogel for bio-printing of materials that mimic natural human soft tissues.

Bio-printing uses live cells within the scaffolding of the new tissues and could potentially transform cell printing.

A provisional patent application has been filed on this new material, which will be able to generate multiple types of human soft tissues, including skin, skeletal muscles, blood vessels and heart muscles.

“Soft tissue bio-printing suffers from significant challenges as the hydrogels were often brittle and un-stretchable and could not mimic the mechanical behavior of human soft tissues,” said Yi Hong, UTA professor of bioengineering and leader of the project.

“To overcome these challenges, we developed a simple system using a single cross-linking mechanism activated by visible light to achieve a highly elastic and robust, biodegradable and biocompatible hydrogel for cell printing,” Hong added.

The researchers have described their findings in a new journal paper published recently in the American Chemical Society’s ACS Applied Materials and Interfaces as as “Highly Elastic Biodegradable Single-Network Hydrogel for Cell Printing.” The paper was also selected as an American Chemical Society Editors’ Choice.

A tri-block biodegradable polymer of polycaprolactone – poly (ethylene glycol) – polycaprolactone (PCL-PEG-PCL) with two end groups of acrylates and a visible-light water-soluble initiator forms this hydrogel for cell printing.

“Polycaprolactone and poly (ethylene glycol) are already widely used in Food and Drug Administration – approved devices and implants, which should facilitate quick translation of the material into pre-clinical and clinical trials in the future,” Hong said.

“The tunability of the mechanical properties of this hydrogel to match different soft tissues is a real advantage,” he added.

Michael Cho, UTA chair of bioengineering, congratulated Hong and his colleagues on this research.

“These colleagues may have created a new way of thinking about hydrogel bio-printing research,” Cho said. “This work is also critical in advancing UTA’s strategic theme of health and the human condition through cross-disciplinary work.”

Source: University of Texas at Arlington – 03.05.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Daehoon Han/Rutgers University–New Brunswick

3D printing becomes 4D as objects morph over time and temperatures change

Rutgers engineers have invented a “4D printing” method for a smart gel that could lead to the development of “living” structures in human organs and tissues, soft robots and targeted drug delivery. The 4D printing approach here involves printing a 3D object with a hydrogel (water-containing gel) that changes shape over time when temperatures change, said Howon Lee, senior author of a new study and assistant professor in the Department of Mechanical and Aerospace Engineering at Rutgers University–New Brunswick. The study, published online today in Scientific Reports, demonstrates fast, scalable, high-resolution 3D printing of hydrogels, which remain solid and retain their shape... more read more

Credit: The Hong Kong University of Science and Technology

That Open Doors for Future Material Biology and Biomedical Applications

A research team led by Prof SUN Fei, Assistant Professor of Chemical & Biological Engineering at The Hong Kong University of Science and Technology (HKUST), has created a new protein-based stimuli-responsive smart hydrogel that could open doors for future material biology and biomedical applications. Hydrogels, also known as soft matter in the medical world, are leading materials for biomedical applications such as drug delivery and stem cell therapy. But traditional hydrogels, used in products such as facial masks and contact lenses, are made up of either synthetic polymers or biological extracts such as animal collagen, are likely to cause allergies. They cannot fully mimic the complex... more read more

Scientists have succeeded in creating 'fiber-reinforced soft composites,' or tough hydrogels combined with woven fiber fabric. These fabrics are highly flexible, tougher than metals, and have a wide range of potential applicattions.

Efforts are currently underway around the world to create materials that are friendly to both society and the environment. Among them are those that comprise different materials, which exhibit the merits of each component. Hokkaido University researchers, led by Professor Jian Ping Gong, have focused on creating a reinforced material using hydrogels. Though such a substance has potential as a structural biomaterial, up until now no material reliable and strong enough for long-term use has been produced. This study was conducted as a part of the Cabinet Office's Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT). To address the problem, the team combined hydrogels... more read more

In research published in Nature Materials, a team led by scientists from the RIKEN Center for Emergent Matter Science in Japan has developed a new hydrogel that works like an artificial muscle--quickly stretching and contracting in response to changing temperature.

They have also managed to use the polymer to build an L-shaped object that slowly walks forward as the temperature is repeatedly raised and lowered. Hydrogels are polymers that can maintain large quantities of water within their networks. Because of this, they can swell and shrink in response to changes in the environment such as voltage, heat, and acidity. In this sense they are actually similar to the plant cells, which are able to change shape as the amount of water within them changes in response to environmental conditions. However, most hydrogels do this very slowly, and must absorb and excrete water to either expand or shrink in volume. The unique property of the hydrogel developed... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED