MMaterialsgateNEWS 2017/02/28

Related MaterialsgateCARDS

New 'tougher-than-metal' fiber-reinforced hydrogels

Credit: Hokkaido University

Scientists have succeeded in creating 'fiber-reinforced soft composites,' or tough hydrogels combined with woven fiber fabric. These fabrics are highly flexible, tougher than metals, and have a wide range of potential applicattions.

Efforts are currently underway around the world to create materials that are friendly to both society and the environment. Among them are those that comprise different materials, which exhibit the merits of each component.

Hokkaido University researchers, led by Professor Jian Ping Gong, have focused on creating a reinforced material using hydrogels. Though such a substance has potential as a structural biomaterial, up until now no material reliable and strong enough for long-term use has been produced. This study was conducted as a part of the Cabinet Office's Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT).

To address the problem, the team combined hydrogels containing high levels of water with glass fiber fabric to create bendable, yet tough materials, employing the same method used to produce reinforced plastics. The team found that a combination of polyampholyte (PA) gels, a type of hydrogel they developed earlier, and glass fiber fabric with a single fiber measuring around 10μm in diameter produced a strong, tensile material. The procedure to make the material is simply to immerse the fabric in PA precursor solutions for polymerization.

When used alone, the fiber-reinforced hydrogels developed by the team are 25 times tougher than glass fiber fabric, and 100 times tougher than hydrogels - in terms of the energy required to destroy them. Combining these materials enables a synergistic toughening. The team theorizes that toughness is increased by dynamic ionic bonds between the fiber and hydrogels, and within the hydrogels, as the fiber's toughness increases in relation to that of the hydrogels. Consequently, the newly developed hydrogels are 5 times tougher compared to carbon steel.

"The fiber-reinforced hydrogels, with a 40 percent water level, are environmentally friendly," says Dr. Jian Ping Gong, "The material has multiple potential applications because of its reliability, durability and flexibility. For example, in addition to fashion and manufacturing uses, it could be used as artificial ligaments and tendons, which are subject to strong load-bearing tensions." The principles to create the toughness of the present study can also be applied to other soft components, such as rubber.

Source: Hokkaido University – 23.02.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Researchers from MIT and Harvard Medical School have developed a biocompatible and highly stretchable optical fiber made from hydrogel -- an elastic, rubbery material composed mostly of water.

The fiber, which is as bendable as a rope of licorice, may one day be implanted in the body to deliver therapeutic pulses of light or light up at the first sign of disease. The researchers say the fiber may serve as a long-lasting implant that would bend and twist with the body without breaking down. The team has published its results online in the journal Advanced Materials. Using light to activate cells, and particularly neurons in the brain, is a highly active field known as optogenetics, in which researchers deliver short pulses of light to targeted tissues using needle-like fibers, through which they shine light from an LED source. "But the brain is like a bowl of Jell-O, whereas... more read more

In research published in Nature Materials, a team led by scientists from the RIKEN Center for Emergent Matter Science in Japan has developed a new hydrogel that works like an artificial muscle--quickly stretching and contracting in response to changing temperature.

They have also managed to use the polymer to build an L-shaped object that slowly walks forward as the temperature is repeatedly raised and lowered. Hydrogels are polymers that can maintain large quantities of water within their networks. Because of this, they can swell and shrink in response to changes in the environment such as voltage, heat, and acidity. In this sense they are actually similar to the plant cells, which are able to change shape as the amount of water within them changes in response to environmental conditions. However, most hydrogels do this very slowly, and must absorb and excrete water to either expand or shrink in volume. The unique property of the hydrogel developed... more read more

Coating the inside of glass microtubes with a polymer hydrogel material dramatically alters the way capillary forces draw water into the tiny structures, researchers have found.

The discovery could provide a new way to control microfluidic systems, including popular lab-on-a-chip devices. Capillary action draws water and other liquids into confined spaces such as tubes, straws, wicks and paper towels, and the flow rate can be predicted using a simple hydrodynamic analysis. But a chance observation by researchers at the Georgia Institute of Technology will cause a recalculation of those predictions for conditions in which hydrogel films line the tubes carrying water-based liquids. "Rather than moving according to conventional expectations, water-based liquids slip to a new location in the tube, get stuck, then slip again - and the process repeats over and... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED