MMaterialsgateNEWS 2017/04/27

Related MaterialsgateCARDS

Researchers invent process to make sustainable rubber and plastics

Credit: University of Delaware/ Jeffrey Chase

Findings by scientists could transform the multi-billion-dollar plastics and rubber industries

Synthetic rubber and plastics - used for manufacturing tires, toys and myriad other products - are produced from butadiene, a molecule traditionally made from petroleum or natural gas. But those manmade materials could get a lot greener soon, thanks to the ingenuity of a team of scientists from three U.S. research universities.

The scientific team -- from the University of Delaware, the University of Minnesota and the University of Massachusetts - has invented a process to make butadiene from renewable sources like trees, grasses and corn.

The findings, now online, will be published in the American Chemical Society's ACS Sustainable Chemistry and Engineering, a leading journal in green chemistry and engineering. The study's authors are all affiliated with the Catalysis Center for Energy Innovation (CCEI) based at the University of Delaware. CCEI is an Energy Frontier Research Center funded by the U.S. Department of Energy.

"Our team combined a catalyst we recently discovered with new and exciting chemistry to find the first high-yield, low-cost method of manufacturing butadiene," says CCEI Director Dionisios Vlachos, the Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering at UD and a co-author of the study. "This research could transform the multi-billion-dollar plastics and rubber industries."

Butadiene is the chief chemical component in a broad range of materials found throughout society. When this four-carbon molecule undergoes a chemical reaction to form long chains called polymers, styrene-butadiene rubber (SBR) is formed, which is used to make abrasive-resistant automobile tires. When blended to make nitrile butadiene rubber (NBR), it becomes the key component in hoses, seals and the rubber gloves ubiquitous to medical settings.

In the world of plastics, butadiene is the chief chemical component in acrylonitrile-butadiene-styrene (ABS), a hard plastic that can be molded into rigid shapes. Tough ABS plastic is used to make video game consoles, automotive parts, sporting goods, medical devices and interlocking plastic toy bricks, among other products.

The past 10 years have seen a shift toward an academic research focus on renewable chemicals and butadiene, in particular, due to its importance in commercial products, Vlachos says.

"Our team's success came from our philosophy that connects research in novel catalytic materials with a new approach to the chemistry," says Vlachos. "This is a great example where the research team was greater than the sum of its parts."

Novel chemistry in three steps

The novel chemistry included a three-step process starting from biomass-derived sugars. Using technology developed within CCEI, the team converted sugars to a ring compound called furfural. In the second step, the team further processed furfural to another ring compound called tetrahydrofuran (THF).

It was in the third step that the team found the breakthrough chemical manufacturing technology. Using a new catalyst called "phosphorous all-silica zeolite," developed within the center, the team was able to convert THF to butadiene with high yield (greater than 95 percent).

The team called this new, selective reaction "dehydra-decyclization" to represent its capability for simultaneously removing water and opening ring compounds at once.

"We discovered that phosphorus-based catalysts supported by silica and zeolites exhibit high selectivity for manufacturing chemicals like butadiene," says Prof. Wei Fan of the University of Massachusetts Amherst. "When comparing their capability for controlling certain industrial chemistry uses with that of other catalysts, the phosphorous materials appear truly unique and nicely complement the set of catalysts we have been developing at CCEI."

The invention of renewable rubber is part of CCEI's larger mission. Initiated in 2009, CCEI has focused on transformational catalytic technology to produce renewable chemicals and biofuels from natural biomass sources.

"This newer technology significantly expands the slate of molecules we can make from lignocellulose," says Prof. Paul Dauenhauer of the University of Minnesota, who is co-director of CCEI and a co-author of the study.

Source: University of Delaware – 24.04.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Reyes-Hernandez/NIST

In science, sometimes the best discoveries come when you're exploring something else entirely.

That's the case with recent findings from the National Institute of Standards and Technology (NIST), where a research team has come up with a way to build safe, nontoxic gold wires onto flexible, thin plastic film. Their demonstration potentially clears the path for a host of wearable electronic devices that monitor our health. The finding might overcome a basic issue confronting medical engineers: How to create electronics that are flexible enough to be worn comfortably on or even inside the human body--without exposing a person to harmful chemicals in the process--and will last long enough to be useful and convenient. "Overall this could be a major step in wearable sensor research... more read more

Credit: Yi Cui Group

Stanford engineers have developed a low-cost, plastic-based textile that, if woven into clothing, could cool your body far more efficiently than is possible with the natural or synthetic fabrics in clothes we wear today.

Describing their work in Science, the researchers suggest that this new family of fabrics could become the basis for garments that keep people cool in hot climates without air conditioning. “If you can cool the person rather than the building where they work or live, that will save energy,” said Yi Cui, an associate professor of materials science and engineering at Stanford and of photon science at SLAC National Accelerator Laboratory. This new material works by allowing the body to discharge heat in two ways that would make the wearer feel nearly 4 degrees Fahrenheit cooler than if they wore cotton clothing. The material cools by letting perspiration evaporate through the material... more read more

Researchers from Eindhoven and Berlin see prospects for self-cleaning surfaces

Materials that move all by themselves under the influence of light - this phenomenon has been known for a number of years. However, since the source tends to be ultraviolet light, the required intensity can damage the material. The challenge was to find a material that behaves in this way in visible light, preferably unprocessed sunlight. The researchers from Eindhoven and Berlin have now succeeded in producing a thin polymer layer containing light-sensitive molecules (azo-dyes). Lying in sunlight, the thin film begins to oscillate spontaneously and irregularly. Combination of factors Why the plastic does this is something that the researchers cannot yet quite explain. "It seems to... more read more

Your car's bumper is probably made of a moldable thermoplastic polymer called ABS, shorthand for its acrylonitrile, butadiene and styrene components.

Light, strong and tough, it is also the stuff of ventilation pipes, protective headgear, kitchen appliances, Lego bricks and many other consumer products. Useful as it is, one of its drawbacks is that it is made using chemicals derived from petroleum. Now, researchers at the Department of Energy's Oak Ridge National Laboratory have made a better thermoplastic by replacing styrene with lignin, a brittle, rigid polymer that, with cellulose, forms the woody cell walls of plants. In doing so, they have invented a solvent-free production process that interconnects equal parts of nanoscale lignin dispersed in a synthetic rubber matrix to produce a meltable, moldable, ductile material that's... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products