MMaterialsgateNEWS 2018/06/01

Firing Up A New Alloy: Sintering Solutions Aboard the International Space Station

Credit: Rand German

A centuries-old materials bonding process is being tested aboard the International Space Station in an experiment that could pave the way for more materials research of its kind aboard the orbiting laboratory.

Sintering is the process of heating different materials to compress their particles together.

“In space the rules of sintering change,” said Rand German, principal investigator for the investigation titled NASA Sample Cartridge Assembly-Gravitational Effects on Distortion in Sintering (MSL SCA-GEDS-German). “The first time someone tries to do sintering in a different gravitational environment beyond Earth or even microgravity, they may be in for a surprise. There just aren’t enough trials yet to tell us what the outcome could be. Ultimately we have to be empirical, give it a try, and see what happens.”

If the disparities between sintering on Earth and sintering in space can be better understood through continued experimentation, the technique could hold promise as an in-flight manufacturing solution or become a reliable path for piecing together in-situ resources. Missions to Mars or the Moon could leverage this new knowledge of sintering to piece together habitats from the lunar or Martian soil, known as regolith. Regolith includes mixed sediment like loose rock, dust, and soil.

The sintering process is used on a wide variety of everyday items that require metal bonding from the metal parts of a watch to a set of braces or the hinges on eyeglasses. One familiar example of the process in action is the bonding that occurs when ceramics are fired in a kiln.

This experiment relies on sintering to study a new alloy’s behavior in microgravity.

“After the 1940s, sintering really started to take off as a manufacturing process,” said German. “Once the automotive industry adopted it, the field saw phenomenal growth. Now we want to take sintering to space.”

Components for the investigation were delivered to the space station aboard SpaceX CRS-14 and were fired in the Material Science Laboratory Low Gradient Furnace (MSL-LGF) within Materials Science Research Rack One (MSRR-1).

The investigation uses a process known as liquid phase sintering to test the degree of distortion in sintering caused by microgravity. Slightly different from traditional sintering, liquid phase sintering introduces materials with a lower melting point to the mix to bond particles not otherwise easily sintered. The melted additive speeds up and improves the bonding process. The results may allow scientists to adjust future calculations to create more successful bonds in microgravity.

“Sintering happens at the atomic level,” said German. “Increased temperatures can cause those atoms to move about, and the liquid phase for our investigation helps with this atomic transport. On Earth, we have very stable structures where particles are pushed together by gravity, but we found in prior experiments that without gravity’s compression, the components being sintered can distort tremendously.”

Initially scientists on German’s team hoped to sinter a tungsten, nickel, and iron alloy, but the team had to get creative to accommodate a temperature of 1210 C – the maximum allowed for the station’s Low Gradient Furnace. Their solution? Create a new alloy. While based on previous research on the melting points and sintering applications of manganese, the substance created for this investigation is a novel combination of tungsten, nickel, copper and manganese.

The alloy could even have uses for lower temperature sintering back on Earth, where this bonding process has revolutionized and expanded options for the additive manufacturing industry. While the effects of Earth’s gravitational pull are well known and defined for sintering on the ground, the investigation’s results could still allow for process improvements and new insights into distortion. Likewise, the new alloy developed by German’s team could be useful for a variety of industrial applications.

Source: NASA/Johnson Space Center – 22.05.2018.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: Oregon State University

Researchers in Oregon State University’s College of Engineering have taken a key step toward the rapid manufacture of flexible computer screens and other stretchable electronic devices, including soft robots.

The advance by a team within the college’s Collaborative Robotics and Intelligent Systems Institute paves the way toward the 3D printing of tall, complicated structures with a highly conductive gallium alloy. Researchers put nickel nanoparticles into the liquid metal, galinstan, to thicken it into a paste with a consistency suitable for additive manufacturing. “The runny alloy was impossible to layer into tall structures,” said Yiğit Mengüç, assistant professor of mechanical engineering and co-corresponding author on the study. “With the paste-like texture, it can be layered while maintaining its capacity to flow, and to stretch inside of rubber tubes. We demonstrated the potential... more read more

Credit: Purdue University image/Marshall Farthing

Researchers have demonstrated how to create a super-strong aluminum alloy that rivals the strength of stainless steel, an advance with potential industrial applications.

“Most lightweight aluminum alloys are soft and have inherently low mechanical strength, which hinders more widespread industrial application,” said Xinghang Zhang, a professor in Purdue University’s School of Materials Engineering. “However, high-strength, lightweight aluminum alloys with strength comparable to stainless steels would revolutionize the automobile and aerospace industries.” New research shows how to alter the microstructure of aluminum to impart greater strength and ductility. Findings were detailed in two new research papers. The work was led by a team of researchers that included Purdue postdoctoral research associate Sichuang Xue and doctoral student Qiang Li... more read more

New research into the largely unstudied area of heterostructural alloys could lead to greater materials control and in turn better semiconductors, advances in nanotechnology for pharmaceuticals and improved metallic glasses for industrial applications.

Heterostructural alloys are blends of compounds made from materials that don’t share the same atom arrangement. Conventional alloys are isostructural, meaning the compounds they consist of, known as the end members, have the same crystal structure. “Alloys are all around us,” said study co-author Janet Tate, a physicist at Oregon State University. “An example of an istostructural alloy is an LED; you have a semiconductor like aluminum gallium arsenide, dope it with a particular material and make it emit light, and change the color of the light by changing the relative concentration of aluminum and gallium.” Structure and composition are the two means of controlling the behavior... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED