MMaterialsgateNEWS 2015/07/27

Medical Engineering: Tiny mechanical wrist gives new dexterity to needlescopic surgery

With the flick of a tiny mechanical wrist, a team of engineers and doctors at Vanderbilt University's Medical Engineering and Discovery Laboratory hope to give needlescopic surgery a whole new degree of dexterity.

Needlescopic surgery, which uses surgical instruments shrunk to the diameter of a sewing needle, is the ultimate form of minimally invasive surgery. The needle-sized incisions it requires are so small that they can be sealed with surgical tape and usually heal without leaving a scar.

Although it's been around since the 1990s, the technique, which is also called mini- or micro-laparoscopy, is so difficult that only a handful of surgeons around the world use it regularly. In addition, it has largely been limited to scraping away diseased tissue with sharp-edged rings called curettes or burning it away with tiny lasers or heated wires.

So a research team headed by Associate Professor of Mechanical Engineering Robert Webster has developed a surgical robot with steerable needles equipped with wrists that are less than 1/16th of an inch (2 mm) thick. The achievement is described in a paper titled "A wrist for needle-sized surgical robots" presented in May at the International Conference on Robotics and Automation in Seattle.

The new device is designed to provide needlescopic tools with a degree of dexterity that they have previously lacked. Not only will this allow surgeon-operators to perform a number of procedures such as precise resections and suturing that haven't been possible before, but it will also allow the use of needles in places that have been beyond their reach, such as the nose, throat, ears and brain.

"The smaller you can make surgical instruments the better...as long as you can maintain an adequate degree of dexterity," said Professor of Urological Surgery S. Duke Herrell, who is consulting on the project. "In my experience, the smaller the instruments, the less post-operative pain patients experience and the faster they recover."

That has certainly been the case with traditional minimally invasive surgery (MIS), which has become increasingly common in recent years. This method, which involves operating with instruments inserted through incisions that range from 3/8th to 3/16th of an inch (10 mm to 5 mm), generally causes patients less pain, less tissue damage, less scarring and shorter recovery periods.

The effort to adapt robotic technology to MIS has been dominated by Intuitive Surgical's da Vinci Surgical System, a robotic surgical system designed specifically for the minimally invasive approach. Depending on the type of surgery, it requires incisions that are 1/3 of an inch (8 mm) or 3/16th of an inch (5 mm).

"Although it works very well for abdominal surgery, the da Vinci uses a wire-and-pulley system that is extremely difficult to miniaturize any further, so it won't work in smaller spaces like the head and neck," said Webster.

For the past six years, Webster and his colleagues have been developing a surgical robot that uses "steerable needles." This is a system of telescoping tubes that are made out of nitinol, a "memory metal" that retains it shape. Each tube has a different intrinsic curvature. By precisely rotating, extending and retracting the tubes, an operator can steer the tip in different directions, allowing it to follow a curving path through the body.

This design allows the needles to operate in areas of the body that neither manual endoscopic instruments, which are straight rods equipped with a variety of end effectors, nor the da Vinci robot can reach. However, its usefulness was limited by the fact that the needles didn't have a wrist.

"Adding the wrists to the steerable needles greatly expands the system's usefulness," Herrell said. "There are a myriad of potential applications in some really exciting areas such as endoscopic neurosurgery, operating within small lumens such as the ear, bronchus, urethra, etc. This would allow us to do surgeries that at present require much larger incisions and may even enable us to perform operations that are not feasible at present."

The researchers made a number of unsuccessful attempts to build mechanical wrists that were small enough. "We kept trying to build the wrists out of a lot of small pieces, but we couldn't get them to work up to our standards," said Webster.

"Then we realized we had to start thinking outside of the box," said graduate studentPhilip Swaney. "Instead of combining a bunch of pieces, we started with a tiny nitinol tube and began thinking about what we had to remove."

The tube is extremely rigid, but they discovered that if they cut a series of tiny slots down one side, the rigidity decreased substantially: Enough, in fact, so they could get it to bend up to 90 degrees by pulling on a small wire that runs inside the tube that is attached at the tip. The wrist springs back to a straight position when tension on the wire is released.

"Once we got the idea, we realized it could be a real game changer so we had to build it," Swaney said.

Vanderbilt University applied for a provisional patent on the design in May.

Team members would like to test the system by using it for "transnasal" surgery: operations to remove tumors in the pituitary gland and at the skull base that traditionally involve cutting large openings in a patient's skull and/or face. Studies have shown that using an endoscope to go through the nasal cavity is less traumatic, but the procedure is so difficult that only a handful of surgeons have mastered it.

"It should be useful for a number of other operations as well," said Webster. "We think once we give this tool to surgeons they will find all kinds of applications we haven't thought of."

By the end of the summer, they hope to have completed the control software and the interface that allows the surgeons to operate the device. They are actively looking for a commercial partner who will take the new instrument through the FDA approval process including initial clinical trials. "Our best case scenario is that the system could be available to surgeons in four to five years," Webster said.

Source: Vanderbilt University – 23.07.2015.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Semiconducting silicon spicules engage tissue like a bee stinger

Researchers have developed a new approach for better integrating medical devices with biological systems. The researchers, led by Bozhi Tian, assistant professor in chemistry at the University of Chicago, have developed the first skeleton-like silicon spicules ever prepared via chemical processes. "Using bone formation as a guide, the Tian group has developed a synthetic material from silicon that shows potential for improving interaction between soft tissue and hard materials," said Joe Akkara, a program director in the National Science Foundation materials research division, which funds this research. "This is the power of basic scientific research. The Tian group has created... more read more

New flexible, silver-impregnated elastic mesh material is perfect for thermotherapy

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle Research, Institute for Basic Science (IBS) in Seoul, along with an international team, have come up with an ingenious way of creating therapeutic heat in a light, flexible design. Other teams have come up with similar devices before, although no one was able to create something that didn’t rely on exotic materials or a complex fabrication process, factors which both carry hefty price tags. Unlike their predecessors, the team at IBS stayed away from things like carbon nanotubes... more read more

A team of bioengineers at Brigham and Women's Hospital (BWH), led by Ali Khademhosseini, PhD, and Nasim Annabi, PhD, of the Biomedical Engineering Division, has developed a new protein-based gel that, when exposed to light, mimics many of the properties of elastic tissue, such as skin and blood vessels.

In a paper published in Advanced Functional Materials, the research team reports on the new material's key properties, many of which can be finely tuned, and on the results of using the material in preclinical models of wound healing. "We are very interested in engineering strong, elastic materials from proteins because so many of the tissues within the human body are elastic. If we want to use biomaterials to regenerate those tissues, we need elasticity and flexibility," said Annabi, a co-senior author of the study. "Our hydrogel is very flexible, made from a biocompatible polypeptide and can be activated using light." "Hydrogels - jelly-like materials that... more read more

Genetically engineered fibers of the protein spidroin, which is the construction material for spider webs, has proven to be a perfect substrate for cultivating heart tissue cells, MIPT researchers found. They discuss their findings in an article that has recently come out in the journal PLOS ONE.

The cultivation of organs and tissues from a patient's cells is the bleeding edge of medical research - regenerative methods can solve the problem of transplant rejection. However,it's quite a challenge to find a suitable frame, or substrate, to grow cells on. The material should be non-toxic and elastic andshould not be rejected by the body or impede cell growth. A group of researchers led by Professor Konstantin Agladze, who heads the Laboratory of the Biophysics of Excitable Systems at MIPT, works on cardiac tissue engineering. The group has been cultivating fully functional cardiac tissues, able to contract and conduct excitation waves, from cells called cardiomyocytes. Previously... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED