MMaterialsgateNEWS 2015/08/10

Related MaterialsgateCARDS

Bionic: New hydrogel stretches and contracts like a heat-driven muscle

In research published in Nature Materials, a team led by scientists from the RIKEN Center for Emergent Matter Science in Japan has developed a new hydrogel that works like an artificial muscle--quickly stretching and contracting in response to changing temperature.

They have also managed to use the polymer to build an L-shaped object that slowly walks forward as the temperature is repeatedly raised and lowered. Hydrogels are polymers that can maintain large quantities of water within their networks. Because of this, they can swell and shrink in response to changes in the environment such as voltage, heat, and acidity. In this sense they are actually similar to the plant cells, which are able to change shape as the amount of water within them changes in response to environmental conditions.

However, most hydrogels do this very slowly, and must absorb and excrete water to either expand or shrink in volume. The unique property of the hydrogel developed by the RIKEN team is that it acts like an artificial muscle, which does not contract equally in all directions. Rather, they contract in one dimension while expanding in another, meaning that they can change shape repeatedly without absorbing or excreting water.

The secret to the new hydrogel's property is electrostatic charge. Using a method that they published earlier this year, the team arranged metal-oxide nanosheets into a single plane within a material by using a magnetic field and then fixed them in place using a procedure called light-triggered in-situ vinyl polymerization, which essentially uses light to congeal a substance into a hydrogel. The nanosheets ended up stuck within the polymer, aligned in a single plane. Due to electrostatic forces, the sheets create electrostatic resistance in one direction but not in the other.

According to author Yasuhiro Ishida, "We originally designed this material to be stretchable in one direction, but we also found that at a temperature called the lower critical solution temperature, which we calculated to be 32 degrees Celsius, the polymer rapidly changed shape, stretching in length. Intriguingly, the gel did not change in volume. The substance underwent the change in shape in air and in a liquid environment, showing that it doesn't require the uptake of water. So in other words, it will work even in a normal air environment."

The team members were intrigued to find, additionally, that the process was very fast, taking just one second, with the rate of deformation, at about 70% per second, being higher than what has been seen in other hydrogels.

As a demonstration of how the polymer could be put to practical use, the group designed an L-shaped piece of polymer that can actually walk, in a water environment, as the legs lengthen and contract in response to changing temperature. The group now plans to conduct further studies to create substances that can be used in practical applications. According to Ishida, "We are now planning further work to improve the properties of the substance. One idea we have is to use a hydrogel like this to make artificial muscles that could automatically open and close radiator systems as temperatures rise and fall. This could be used, for example, to prevent a device from overheating."

Source: RIKEN – 10.08.2015.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Coating the inside of glass microtubes with a polymer hydrogel material dramatically alters the way capillary forces draw water into the tiny structures, researchers have found.

The discovery could provide a new way to control microfluidic systems, including popular lab-on-a-chip devices. Capillary action draws water and other liquids into confined spaces such as tubes, straws, wicks and paper towels, and the flow rate can be predicted using a simple hydrodynamic analysis. But a chance observation by researchers at the Georgia Institute of Technology will cause a recalculation of those predictions for conditions in which hydrogel films line the tubes carrying water-based liquids. "Rather than moving according to conventional expectations, water-based liquids slip to a new location in the tube, get stuck, then slip again - and the process repeats over and... more read more

Stretchable, biocompatible hydrogels with complex patterning could be used in tissue engineering.

Researchers have developed a new way of making tough — but soft and wet — biocompatible materials, called “hydrogels,” into complex and intricately patterned shapes. The process might lead to injectable materials for delivering drugs or cells into the body; scaffolds for regenerating load-bearing tissues; or tough but flexible actuators for future robots, the researchers say. The new process is described in a paper in the journal Advanced Materials, co-authored by MIT associate professor of mechanical engineering Xuanhe Zhao and colleagues at MIT, Duke University, and Columbia University. Zhao says the new process can produce complex hydrogel structures that are “extremely tough... more read more

Like vast international trading companies, biological systems pick up freight items (in the form of small molecules), transport them from place to place and release them at their proper destination. These ubiquitous processes are critical for activities ranging from photosynthesis to neuronal signaling.

The efficient capture, transport and release of molecules is also vital for the maintenance of equilibrium (or homeostasis), essential to all living things. In research appearing in the current issue of the journal Nature Chemistry, Ximin He, Ph.D., and her colleagues* describe a method capable of mimicking Nature's ability to sort, capture, transport and release molecules. The technique sets the stage for continuous and efficient manipulation of a broad range of molecules of relevance to human and environmental health. Professor He is a researcher at Arizona State University's Biodesign Institute, where she recently joined the Center for Molecular Design and Biomimetics. (The... more read more

Rice University bioengineers have created a hydrogel that instantly turns from liquid to semisolid at close to body temperature – and then degrades at precisely the right pace.

The gel shows potential as a bioscaffold to support the regrowth of bone and other three-dimensional tissues in a patient’s body using the patient’s own cells to seed the process. The hydrogel created in the lab of Rice bioengineer Antonios Mikos is a liquid at room temperature but, when injected into a patient, becomes a gel that would fill and stabilize a space while natural tissue grows to replace it. The new material detailed in the American Chemical Society journal Biomacromolecules takes the state of the art a few steps further, Rice scientists said. “This study describes the development of a novel thermogelling hydrogel for stem cell delivery that can be injected into skeletal... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED