MMaterialsgateNEWS 2018/03/28

A simple method developed for 3D bio-fabrication based on bacterial cellulose

Bacterial cellulose can be used in food, cosmetics and biomedical applications, such as implants and artificial organs.

Bacterial cellulose (BC) nanofibers are promising building blocks for the development of sustainable materials with the potential to outperform conventional synthetic materials. BC, one of the purest forms of nanocellulose, is produced at the interface between the culture medium and air, where the aerobic bacteria have access to oxygen. Biocompatibility, biodegradability, high thermal stability and mechanical strength are some of the unique properties that facilitate BC adoption in food, cosmetics and biomedical applications including tissue regeneration, implants, wound dressing, burn treatment and artificial blood vessels.

In the study published in Materials Horizons researchers at Aalto University have developed a simple and customizable process that uses superhydrophobic interfaces to finely engineer the bacteria access to oxygen in three dimensions and in multiple length scales, resulting in hollow, seamless, nanocellulose-based pre-determined objects.

“The developed process is an easy and accessible platform for 3D biofabrication that we demonstrated for the synthesis of geometries with excellent fidelity. Fabrication of hollow and complex objects was made possible. Interesting functions were enabled via multi-compartmentalization and encapsulation. For example, we tested in situ loading of functional particles or enzymes with metal organic frameworks, metal nanoparticles with plasmon adsorption, and capsule-in-capsule systems with thermal and chemical resistance”, explains Professor Orlando Rojas.

This facilitated biofabrication can be explored in new ways by the biomedical field through scaffolding of artificial organs. Advances in bioengineering, for instance by genome editing or co-culture of microorganisms, might also allow further progress towards the simplified formation of composite materials of highly controlled composition, properties and functions.

Source: Aalto University - 25.03.2018.

Article:

Luiz G. Greca, Janika Lehtonen, Blaise L. Tardy, Jiaqi Guoa and Orlando J. Rojas, Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route
Materials Horizons 2018, Advance Article, DOI: 10.1039/C7MH01139C

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

For centuries, cellulose has formed the basis of the world's most abundantly printed-on material: paper. Now, thanks to new research at MIT, it may also become an abundant material to print with -- potentially providing a renewable, biodegradable alternative to the polymers currently used in 3-D printing materials.

"Cellulose is the most abundant organic polymer in the world," says MIT postdoc Sebastian Pattinson, lead author of a paper describing the new system in the journal Advanced Materials Technologies. The paper is co-authored by associate professor of mechanical engineering A. John Hart, the Mitsui Career Development Professor in Contemporary Technology. Cellulose, Pattinson explains, is "the most important component in giving wood its mechanical properties. And because it's so inexpensive, it's biorenewable, biodegradable, and also very chemically versatile, it's used in a lot of products. Cellulose and its derivatives are used in pharmaceuticals, medical devices... more read more

New computational approach allows researchers to design cellulose nanocomposites with optimal properties

A class of biological materials found within numerous natural systems, most notably trees, cellulose nanocrystals have captured researchers' attention for their extreme strength, toughness, light weight, and elasticity. The materials are so strong and tough, in fact, that many people think they could replace Kevlar in ballistic vests and combat helmets for military. Unlike their source material (wood), cellulose nanocrystals are transparent, making them exciting candidates for protective eyewear, windows, or displays. Although there is a lot of excitement around the idea of nanocellulose-based materials, the reality often falls flat. "It's difficult to make these theoretical... more read more

A group of researchers at Chalmers University of Technology have managed to print and dry three-dimensional objects made entirely by cellulose for the first time with the help of a 3D-bioprinter.

They also added carbon nanotubes to create electrically conductive material. The effect is that cellulose and other raw material based on wood will be able to compete with fossil-based plastics and metals in the on-going additive manufacturing revolution, which started with the introduction of the 3D-printer. 3D printing is a form of additive manufacturing that is predicted to revolutionise the manufacturing industry. The precision of the technology makes it possible to manufacture a whole new range of objects and it presents several advantages compared to older production techniques. The freedom of design is great, the lead time is short, and no material goes to waste. Plastics and metals... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED