MMaterialsgateNEWS 2012/06/26

Energy: Bringing down the cost of fuel cells

New catalyst dramatically cheaper without sacrificing performance

Engineers at the University of Wisconsin-Milwaukee (UWM) have identified a catalyst that provides the same level of efficiency in microbial fuel cells (MFCs) as the currently used platinum catalyst, but at 5% of the cost.

Since more than 60% of the investment in making microbial fuel cells is the cost of platinum, the discovery may lead to much more affordable energy conversion and storage devices.

The material – nitrogen-enriched iron-carbon nanorods – also has the potential to replace the platinum catalyst used in hydrogen-producing microbial electrolysis cells (MECs), which use organic matter to generate a possible alternative to fossil fuels.

"Fuel cells are capable of directly converting fuel into electricity," says UWM Professor Junhong Chen, who created the nanorods and is testing them with Assistant Professor Zhen (Jason) He. "With fuel cells, electrical power from renewable energy sources can be delivered where and when required, cleanly, efficiently and sustainably."

The scientists also found that the nanorod catalyst outperformed a graphene-based alternative being developed elsewhere. In fact, the pair tested the material against two other contenders to replace platinum and found the nanorods' performance consistently superior over a six-month period.

The nanorods have been proved stable and are scalable, says Chen, but more investigation is needed to determine how easily they can be mass-produced. More study is also required to determine the exact interaction responsible for the nanorods' performance.

The work was published in March in the journal Advanced Materials ("Nitrogen-Enriched Core-Shell Structured Fe/Fe3C-C Nanorods as Advanced Catalysts for Oxygen Reduction Reaction").

The right recipe

MFCs generate electricity while removing organic contaminants from wastewater. On the anode electrode of an MFC, colonies of bacteria feed on organic matter, releasing electrons that create a current as they break down the waste.

On the cathode side, the most important reaction in MFCs is the oxygen reduction reaction (ORR). Platinum speeds this slow reaction, increasing efficiency of the cell, but it is expensive.

Microbial electrolysis cells (MECs) are related to MFCs. However, instead of electricity, MECs produce hydrogen. In addition to harnessing microorganisms at the anode, MECS also use decomposition of organic matter and platinum in a catalytic process at their cathodes.

Chen and He's nanorods incorporate the best characteristics of other reactive materials, with nitrogen attached to the surface of the carbon rod and a core of iron carbide. Nitrogen's effectiveness at improving the carbon catalyst is already well known. Iron carbide, also known for its catalytic capabilities, interacts with the carbon on the rod surface, providing "communication" with the core. Also, the material's unique structure is optimal for electron transport, which is necessary for ORR.

When the nanorods were tested for potential use in MECs, the material did a better job than the graphene-based catalyst material, but it was still not as efficient as platinum.

"But it shows that there could be more diverse applications for this material, compared to graphene," says He. "And it gave us clues for why the nanorods performed differently in MECs."

Source: University of Wisconsin – Milwaukee – 21.06.2012.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

A team of physicists from the University of Miami introduces a breakthrough in the understanding of high-temperature superconductivity

Researchers from the University of Miami (UM) are unveiling a novel theory for high-temperature superconductivity. The team hopes the new finding gives insight into the process, and brings the scientific community closer to achieving superconductivity at higher temperatures than currently possible. This is a breakthrough that could transform our world. Superconductors are composed of specific metals or mixtures of metals that at very low temperatures allow a current to flow without resistance. They are used in everything from electric devices, to medical imaging machines, to wireless communications. Although they have a wide range of applications, the possibilities are limited by temperature... more read more

Battery-powered devices could soon be a thing of the past thanks to a group of UK researchers who have created a novel energy harvester to power some of the latest wearable gadgets.

By strapping the energy harvester to the knee joint, a user could power body-monitoring devices such as heart rate monitors, pedometers and accelerometers by simply walking and not have the worry of running out of power and replacing batteries. Soldiers may find this device particularly useful as they often have to carry up to 10kg of power equipment when on foot patrol. The device has been presented today, 15 June, in IOP Publishing's journal Smart Materials and Structures by researchers from Cranfield University, The University of Liverpool and University of Salford. The energy harvesting device, which is designed to fit onto the outside of the knee, is circular and consists of... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED